AI + Materials Science

March 27

Tailin Wu, Westlake University

Website: <u>ai4s.lab.westlake.edu.cn/course</u>

Image from: DeepMind

Outlines

- Intro to Materials Science
 - Crystalline Materials
 - Structure-Property Relationship
 - DFT Calculation
- Al in Materials Science
 - Artificial intelligence ab initio (Al²) methods
 - Directly Bridging
 - Inverse Problem
 - Al as a Powerful Assistance
 - Outside and Beyond Crystals

What are Materials?

- Fundamental building blocks of modern life
- Every piece of solid thing you can touch around you
- The history of human civilization is also the history of how humans exploit different kinds of materials

Why do we Care about Materials?

• Necessity:

- Everything is made out of something
- Materials selection is critical to design and performance

• Ambition:

- New materials = new opportunities
- Ex: transistor to integrated circuit

• Fear:

- Most failures are materials failures
- Ex: aircraft accident due to material fracture

Vacuum Tube

MOSFET

Classification of Materials: Two Categories

Fundamental difference: Long-range Order of Atoms

- Crystalline Materials:
 - Atoms are arranged in a periodic pattern repeated throughout the material
 - Ex: diamond, most of semiconductors and metals

• Amorphous Materials:

- No systematic and regular pattern of atom arrangements
- Ex: glass, plastic, rubber

Generally speaking:

• Most of crucial functional applications rely on crystalline materials

Outlines

- Intro to Materials Science
 - Crystalline Materials
 - Structure-Property Relationship
 - DFT Calculation
- Al in Materials Science
 - Artificial intelligence ab initio (Al²) methods
 - Directly Bridging
 - Inverse Problem
 - Al as a Powerful Assistance
 - Outside and Beyond Crystals

Intro to Materials Science

Crystalline Materials

- Periodic repeating pattern of atoms can be clearly observed
- But how to properly describe such structures?

Atomic Resolution TEM HAADF Image of Crystalline Material [1] [1] Mazet, L., et al. (2015). A review of molecular beam epitaxy of ferroelectric $BaTiO_3$ films on Si, Ge and GaAs substrates and their applications. *Science and Technology of Advanced Materials*, *16*(3).

- Fundamental Truth:
 - The crystal consists of identical atom groups as minimal repeating units
 - The crystal is constructed by duplicating its repeating unit following a **certain pattern**

Atomic Resolution TEM HAADF Image of Crystalline Material

Atomic Resolution TEM HAADF Image of Crystalline Material

- Minimal repeating unit:
 - Unit Cell
 - The position of each atom is described by a fractional coordinate in the cell:
 - Ex: Ti atom at the body center

$$\overrightarrow{\mathbf{T}\mathbf{i}} = \left[\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right]^{\mathrm{T}}$$

• Ex: O atom at the top center

$$\vec{\mathbf{0}} = \left[\frac{1}{2}, \frac{1}{2}, 1\right]^{\mathrm{T}}$$

- Minimal repeating unit:
 - Unit Cell

Each Unit Cell can be abstracted as a blue dot in the Lattice Grid

- Repeating pattern:
 - Lattice Grid

Lattice Grid:

 Similar to the Cartesian coordinate system, defined by a set of basis
 Lattice Vectors:

 l_1, l_2, l_3

• The angles between lattice vectors is defined as **lattice angles**:

 α, β, γ

 Together, they are defined as Lattice Constant

()

 \boldsymbol{l}_2

 l_3

• In our example: Cubic BaTiO₃

$$||\vec{a}|| = ||\vec{b}|| = ||\vec{c}|| = 4.01 \text{ Å}$$
$$\alpha = \beta = \gamma = 90^{\circ}$$

- Ps. 1 Å = 0.1 nm
- Mathematically, structure of a crystalline material \mathcal{M} can be represented as: $\mathcal{M} = (A, X, L)$
 - $A \in \mathbb{Z}^n$: vector of atomic numbers of n atoms in the Unit Cell
 - $X = [x_1, x_2, ..., x_n] \in \mathbb{R}^{3 \times n}$: tensor of fractional atom coordinates
 - $L = [l_1, l_2, l_3] \in \mathbb{R}^{3 \times 3}$: tensor of Lattice Vectors
- Given the Unit Cell, repeat along the Lattice Vectors, you are now able to reconstruct the ENTIRE crystal!

Crystalline Materials: $\mathcal{M} = (A, X, L)$

- $X = [x_1, x_2, ..., x_n] \in \mathbb{R}^{3 \times n}$: tensor of fractional atom coordinates
- $L = [l_1, l_2, l_3] \in \mathbb{R}^{3 \times 3}$: tensor of Lattice Vectors
- Crystal structure \mathcal{M} has properties as follow:
 - **Real space** coordinates *C* of atoms can be obtained as:

$$\boldsymbol{C}^{\mathrm{T}} = \boldsymbol{X}^{\mathrm{T}} \cdot \boldsymbol{L}$$

• Periodicity:

 l_3

$$\begin{aligned} \mathbf{x}'_i &= \mathbf{x}_i + \mathbf{t} \cdot \mathbf{L} \\ \mathbf{t} \in \mathbb{Z}^3 \end{aligned}$$

• coordinates of atoms with same index *i* in the periodic expanded space can be obtained by adding a combination of integer multiple lattice vectors

Crystal Structures:

- 7 crystal systems and 14 Bravais lattices
- spatial arrangement of atoms determines the material properties

Intro to Materials Science

The Essence of Materials Science

• The fundamental research subject can be summarized as:

- Structure:
 - **Composition**: kind and fraction of atoms present
 - Microstructure: how those atoms are arranged in the materials
- Property:
 - Isotropic: orientation-irrelevant, e.g. density, heat capacity, melting point
 - Anisotropic: e.g. polarity, magnetization, piezoelectricity

- Ex: Piezoelectric ceramics BaTiO₃
- Structure:
 - **Composition**: Ba:Ti:O = 1:1:3
 - Microstructure: described as Fig.a
- Property:
 - Isotropic:
 - density = 6.02 g/cm^3 ,
 - melting point = 1,625 °C
 - Anisotropic:
 - piezoelectricity along the polarization (z-axis in Fig.b)

Experimental Approaches Preparation Experiments Material (Shape-memory heart stent) Properties Structure

Experimental Approaches

Experimental Approaches

Structure

- Limitations:
 - Desired structure can not be prepared with precise, atomiclevel control
 - Property of many structures worth studying is unable to be determined experimentally
 - High experimental costs and low efficiency

Theoretical Approaches

Energy

- The valence band of Si is fully filled and the conduction band is empty, preventing the electrons from traveling through the material
- The electrons need to be excited across the band gap by thermal or external energy
- Therefore, the conductivity of Si at temperature T can be approximated: $\sigma \approx N_0 e \mu_e \exp \frac{(E_G)}{kT}$
- Here N_0 is number of electrons per unit volume, μ_0 is the carrier mobility of electron

X Band Structure of Intrinsic Semiconductor (Si)

Theoretical Approaches

- Limitations:
 - Lots of assumptions and approximations have to be applied to the theory
 - Ignored some of the complex micro-scale interactions
 - Limited application scenarios

Band Structure of Intrinsic Semiconductor (Si)

Intro to Materials Science

DFT Calculation

Computational Approaches

- Can we try to compute the material properties purely from its structures?
 - *Ab initio* Calculations: from electrons to properties
- Wave Function of electron:

 $\Psi(\boldsymbol{r},t)$

• Probability Density:

$$\Psi^*(\boldsymbol{r},t)\Psi(\boldsymbol{r},t) = |\Psi(\boldsymbol{r},t)|^2$$

e

 ${}^{1}_{1}H$

• Schrödinger Equation:

$$\widehat{H}\Psi(\boldsymbol{r},t) = i\hbar \frac{\partial}{\partial t}\Psi(\boldsymbol{r},t)$$

• where the Hamiltonian operator is:

$$\widehat{H} = -\frac{\hbar^2}{2m}\nabla^2 + \widehat{V}$$

• Time-Independent Schrödinger Equation:

$$\widehat{H}\psi(\boldsymbol{r}) = E\psi(\boldsymbol{r})$$

 $E_1, \psi_1;$

Ab initio Calculations: Schrödinger equation

- Works fine for single electron system: H atom, hydrogenic ions (He⁺, Li²⁺)
- Directly solving the many-electron Schrödinger equation is currently computationally impossible, with complexity exponential to N, the number of electrons in the system
- Schrödinger Equation:

$$\widehat{H}\Psi(\boldsymbol{r},t) = i\hbar \frac{\partial}{\partial t}\Psi(\boldsymbol{r},t)$$

• Many-Body Calculation:

$$\widehat{H}\psi(\mathbf{R}) = \left[\widehat{T} + \widehat{V} + \widehat{U}\right]\psi(\mathbf{R}) = E\psi(\mathbf{R})$$
$$\left[\sum_{i=1}^{N} \left(-\frac{\hbar^2}{2m_i}\nabla_i^2\right) + \sum_{i=1}^{N} V(\mathbf{r}_i) + \sum_{i\neq j}^{N} U(\mathbf{r}_i, \mathbf{r}_j)\right]\psi = E\psi$$

Ab initio Calculations: Hartree-Fock Method

- Hartree-Fock Method (HF): Self-Consistent Field (SCF)
- Assuming each electron is in an average potential field generated by all the other electrons:

- Hohenberg-Kohn (HK) Theorems:
- Electron Density:

$$\rho_0(\boldsymbol{r}) = N \int d\boldsymbol{r}_1 \dots \int d\boldsymbol{r}_N \psi_0^*(\boldsymbol{R}) \psi_0(\boldsymbol{R})$$

• Total Energy:

$$E_0(\rho_0) = \psi_0^*(\rho_0)\widehat{H}\psi_0(\rho_0)$$

• HK Theorems proof: https://people.chem.ucsb.edu/metiu/horia/OldFiles/115C/KH_Ch4.pdf

Ab initio Calculations: DFT

- Density Functional Theory (DFT):
 - Assumes that the property of the system is determined by electron density ho
 - Treats the **energy as the functional of electron density** (3 variables), instead of trying to solve the entire wave function in the Schrödinger Equation (Nx3 variables)
 - The target of DFT calculation is to solve the Kohn-Sham equation:

$$-\frac{\hbar\nabla^2}{2m} + v_{\rm KS}[\rho](\boldsymbol{r})\right)\varphi_i(\boldsymbol{r}) = \varepsilon_i\varphi_i(\boldsymbol{r})$$

• Where ρ is defined in terms of the Kohn-Sham wave functions φ_i :

$$\rho(\mathbf{r}) = \sum_{i} |\varphi_i(\mathbf{r})|^2$$

Walter Kohn

Lu Jeu Sham

Ab initio Calculations: DFT

- Density Functional Theory (DFT):
- The Kohn-Sham potential $v_{\rm KS}$ consists of 3 terms:
 - External potential $v_{\rm ext}$: generated by the nucleus
 - The Hartree potential v_{Hartree} : the Coulomb repulsion between electrons
 - Exchange-correlation potential $v_{\rm xc}$: complex quantum mechanical interactions

$$v_{\text{KS}}[\rho](\boldsymbol{r}) = v_{\text{ext}}(\boldsymbol{r}) + v_{\text{Hartree}}[\rho](\boldsymbol{r}) + v_{\text{xc}}[\rho](\boldsymbol{r})$$

The Nobel Prize in Chemistry 1998

Photo from the Nobel Foundation archive. Walter Kohn

Photo from the Nobel Foundation archive. John A. Pople

Similar to the H-F method, DFT applies self-consistency (SC) calculation:

- 1. Initialize electron density $\rho_0(\mathbf{r})$ to start the iterative procedure
 - In principle, any random positive function normalized to the total number of electrons is acceptable
 - A reasonable initiation can speed up convergence, e.g.:

$$\rho_0(\boldsymbol{r}) = \sum_{\alpha} \rho_\alpha(\boldsymbol{r} - \boldsymbol{R}_{\alpha})$$

• Where R_{α} and ρ_{α} represents the position and atomic density of the nucleus

- 2. Calculate Kohn-Sham potential $v_{\text{KS}} = v_{\text{ext}} + v_{\text{Hartree}} + v_{\text{xc}}$:
 - The **external potential** v_{ext} is typically the sum of nuclear potentials:

$$v_{\text{ext}}(\boldsymbol{r}) = \sum_{\alpha} v_{\alpha}(\boldsymbol{r} - \boldsymbol{R}_{\alpha})$$

• Where v_{α} can be the Coulomb potential with the nuclear charge Z_{α} :

$$v_{\alpha}(\mathbf{r}) = -\frac{Z_{\alpha}}{r}$$

• Or use other predefined pseudo-potentials for v_{α} depending on systems and tasks

- 2. Calculate Kohn-Sham potential $v_{\rm KS} = v_{\rm ext} + v_{\rm Hartree} + v_{\rm xc}$:
 - The Hartree potential v_{Hartree} can be calculated by either direct integration:

$$v_{\text{Hartree}}(\mathbf{r}) = \int \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d^3 \mathbf{r}'$$

• Or solving Poisson's equation:

$$\nabla^2 v_{\text{Hartree}}(\mathbf{r}) = -4\pi\rho(\mathbf{r})$$

- 2. Calculate Kohn-Sham potential $v_{\rm KS} = v_{\rm ext} + v_{\rm Hartree} + v_{\rm xc}$:
 - The exchange-correlation potential $v_{\rm xc}$ consists of all the other non-classical interactions between electrons, defined as functional derivative of exchange-correlation energy:

$$\mathcal{P}_{\mathrm{XC}}[\rho](\mathbf{r}) = \frac{\delta E_{\mathrm{XC}}}{\delta \rho(\mathbf{r})}$$

• The exchange-correlation energy $E_{\rm xc}$ can be calculated with different designs and approximations, for example the simplest local-density approximation (LDA):

$$E_{\rm xc} = \int d^3 \boldsymbol{r} \, \varepsilon^{\rm HEG} \big(\rho(\boldsymbol{r}) \big)$$

• Where $\varepsilon^{\text{HEG}}(\rho)$ is the exchange-correlation energy per unit volume of homogeneous electron gas (HEG) of a given density ρ , which can be tabulated for different densities

3. Solving the Kohn-Sham equation:

$$\begin{pmatrix} -\frac{\hbar\nabla^2}{2m} + v_{\rm KS}[\rho](\boldsymbol{r}) \\ \widehat{H}_{\rm KS}\varphi_i(\boldsymbol{r}) = \varepsilon_i\varphi_i(\boldsymbol{r}) \end{pmatrix} \varphi_i(\boldsymbol{r}) = \varepsilon_i\varphi_i(\boldsymbol{r})$$

• Where $\hat{H}_{\rm KS} = -\frac{\hbar \nabla^2}{2m} + v_{\rm KS}[\rho](\mathbf{r})$ is the Kohn-Sham Hamiltonian operator

• Apply the Hamiltonian operator to the basis set $\{\phi_i(r)\}$ to obtain Hamiltonian matrix H_{KS} : $H_{ij} = \int \phi_i^*(r) \widehat{H} \phi_j(r) dr$
Density Functional Theory (DFT): Step 3

- 3. Solving the Kohn-Sham equation:
- The Hamiltonian matrix H_{KS} is an $N \times N$ symmetrical matrix
- N is the total number of basis functions, with the basic assumption in DFT that the Kohn-Sham wave function is the **linear combination** of the basis set $\{\phi_i(r)\}$:

$$\varphi_i(\boldsymbol{r}) = \sum_j c_{ij} \phi_j(\boldsymbol{r})$$

- Where c_{ij} is the are the coefficients of the basis functions in the expansion of the ith Kohn-Sham wave function φ_i
- Thus, each element H_{ij} in the $H_{\rm KS}$ describes the interaction between basis ϕ_i and ϕ_j

Density Functional Theory (DFT): Step 3

- 3. Solving the Kohn-Sham equation:
- Once the Kohn-Sham Hamiltonian matrix $H_{\rm KS}$ is constructed, the Kohn-Sham equations turned into an eigenvalue problem:

$$\boldsymbol{H}_{\mathrm{KS}}\boldsymbol{C}=\boldsymbol{E}\boldsymbol{C}$$

- where C is the matrix of coefficients, and E is the diagonal matrix of eigenvalues (orbital energies)
- Then, the Kohn-Sham wave functions can be constructed using *C* and basis set:

$$\varphi_i(\mathbf{r}) = \sum_j c_{ij} \phi_j(\mathbf{r})$$

Density Functional Theory (DFT): Step 4&5

4. Calculate new electron density from obtained wave functions:

$$\rho_1(\mathbf{r}) = \sum_i |\varphi_i(\mathbf{r})|^2$$

- 5. Compare $\rho_1(\mathbf{r})$ and initial guess $\rho_0(\mathbf{r})$:
- If the difference between two densities is lower than a user-defined criterion η : $|\rho_1(r)-\rho_0(r)|<\eta$
- The calculation is considered as **self-consistent**
- With correctly calculated form of wave functions and Hamiltonian matrix, several observables can be evaluated, including total energy, band structure, conductivity, etc.

Density Functional Theory (DFT): Iteration

- 6. If the convergence criterion has not been reached:
- A new iteration begins with $ho_0'(r)$ of several different options:
 - A random guess again
 - Use the output of the previous cycle: always leads to instabilities
 - Mix the last output and the original input:

 $\rho_0'(\boldsymbol{r}) = \beta \rho_0(\boldsymbol{r}) + (1-\beta)\rho_1(\boldsymbol{r})$

- The mixing parameter β is typically chosen to be around 0.3
- Other mixing strategies similar to the one above
- Repeat step 2 to 5 until converged, highly dependent on calculation conditions and hyperparameters

Density Functional Theory (DFT): Limitations

Density Functional Theory (DFT): Limitations

- DFT calculation is still computationally expensive
- Especially for large-scale structures consists 10³ atoms

Alloy

Defects

Outlines

- Intro to Materials Science
 - Crystalline Materials
 - Structure-Property Relationship
 - DFT Calculation
- Al in Materials Science
 - Artificial intelligence ab initio (Al²) methods
 - Directly Bridging
 - Inverse Problem
 - Al as a Powerful Assistance
 - Outside and Beyond Crystals

Al in Materials Science

Artificial intelligence ab initio (Al²) methods

Deep Learning Approaches: Data Driven

Deep Potential Molecular Dynamics (DPMD):

- In each frame of the ab initio molecular dynamics

 (AIMD) simulation, the potential surface
 E(R₁, R₂, ..., R_N) of the structure is determined
 through Quantum Mechanics (QM) calculation, where
 the R_i is the coordinates of the atom i
- The **forces** on each atom can be calculated as the negative derivative of potential to the coordinates:

$$\boldsymbol{F}_{i} = -\nabla E = -\left(\frac{\partial E}{\partial x_{i}}, \frac{\partial E}{\partial y_{i}}, \frac{\partial E}{\partial z_{i}}\right)$$

Deep Potential Molecular Dynamics (DPMD):

 MD computes the half-step velocities of the atoms according to the forces and simulation time step Δt:

$$\boldsymbol{v}_i\left(t + \frac{\Delta t}{2}\right) = \boldsymbol{v}_i(t) + \frac{\Delta t}{2}\boldsymbol{a}_i(t)$$

- Where $a_i(t) = \frac{F_i(t)}{m_i}$ is the acceleration
- At last, MD computes the atom coordinates and full-step velocities, generating a new frame:

$$\boldsymbol{R}_{i}(t + \Delta t) = \boldsymbol{R}_{i}(t) + \Delta t \boldsymbol{v}_{i}\left(t + \frac{\Delta t}{2}\right)$$
$$\boldsymbol{v}_{i}(t + \Delta t) = \boldsymbol{v}_{i}\left(t + \frac{\Delta t}{2}\right) + \frac{\Delta t}{2}\boldsymbol{a}_{i}(t + \Delta t)$$

 Since each iteration involves QM calculation, AIMD can be extremely time and energy consuming

Deep Potential Molecular Dynamics (DPMD) [1]:

- In the DPMD framework, a set of local orthogonal unit bases {e_x, e_y, e_z} centered in the target atom *i* is constructed:
 - e_{χ} : parallel to the O-H bond
 - e_z : perpendicular to H-O-H water molecule plane

•
$$e_y: e_z \times e_x$$

 The relative coordinate of a neighboring atom j can be determined:

$$\boldsymbol{R}_{ij} = x_{ij}\boldsymbol{e}_x + y_{ij}\boldsymbol{e}_y + z_{ij}\boldsymbol{e}_z$$

- The input coordinates of the Neural Network (NN) can be:
 - With both radial and angular information:

$$\boldsymbol{D}_{ij} = \{1/\boldsymbol{R}_{ij}, x_{ij}/\boldsymbol{R}_{ij}^2, y_{ij}/\boldsymbol{R}_{ij}^2, z_{ij}/\boldsymbol{R}_{ij}^2, \}$$

• Or with radial information only:

$$\boldsymbol{D}_{ij} = \left\{ 1/\boldsymbol{R}_{ij} \right\}$$

[1] Zhang, Linfeng, et al. "Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics." *Physical review letters* 120.14 (2018): 143001.

Deep Potential Molecular Dynamics (DPMD):

 D_{ij} of empty neighbors are set to 0

- In the DPMD workflow, the relative coordinates $\{R_{ij}\}_{i=1,2,...}$ are first computed from absolute coordinates R, then converted into $\{D_{ij}\}_{i=1,2,...}$
- The NN outputs the energy of each atom E_i and sum them together to obtain the total energy E
- The loss function is defined as a multi-task loss:

$$L = p_{\epsilon} \Delta \epsilon^{2} + \frac{p_{f}}{3N} \sum_{i} |\Delta F_{i}|^{2} + \frac{p_{\xi}}{9} ||\Delta \xi||^{2}$$

- Consists of 3 terms:
 - Energy per atom ϵ
 - Force on each atom **F**_i,
 - Virial tensor ξ (measures internal stress)
- Where factors *p* are loss weight

Deep Potential Molecular Dynamics (DPMD):

- Relaxation: structures are updated iteratively through AIMD, evolving from an unstable structure to a balanced state
- Comparing the interatomic distance distribution after relaxation via both AIMD and DPMD, the obtained balanced structures fit quite well
- Recall that the NN does not directly predict the interatomic distance, exhibiting the convincing accuracy of the deep potential force field

Deep Potential Molecular Dynamics (DPMD):

 Since the time complexity of DPMD is O(N), it tremendously lowers the computation costs, especially for larger systems

Deep Learning DFT Hamiltonian (DeepH) [1]:

Tips about DFT Hamiltonian \hat{H}_{DFT} :

- Recall that \widehat{H}_{DFT} describes the interactions between basis functions $\{\phi_i\}$
- \widehat{H}_{DFT} is determined by the structure $\{\mathcal{R}\}$
- Many observables are deterministically computed from $\widehat{H}_{\mathrm{DFT}}$
- $\hat{H}_{\rm DFT}$ has to be obtained through computational expensive SCF calculation

[1] Li, He, et al. "Deep-learning density functional theory Hamiltonian for efficient ab initio electronic-structure calculation." *Nature Computational Science* 2.6 (2022): 367-377.

Deep Learning DFT Hamiltonian (DeepH):

Modeling Structure- $\hat{H}_{\rm DFT}$ Relationship || Modeling Structure-Property Relationship

Deep Learning DFT Hamiltonian (DeepH):

Fundamental Facts:

- DFT does support high-accuracy calculation with acceptable expenses for **small systems**
- DFT is NOT suitable for calculating large systems

Key Problem:

• How to learn from small system DFT data and **expand/generalize** to large systems?

Deep Learning DFT Hamiltonian (DeepH):

Challenges:

- 1. Infinite dimension of \hat{H}_{DFT} in the extended systems
- 2. SO(3) Rotation Equivariance of \hat{H}_{DFT}

 $\widehat{H}_{\rm DFT}$

Deep Learning DFT Hamiltonian (DeepH):

Important Prior Physics Knowledge: Nearsightedness Principle [1]

• In the many-body system, local electron properties at r_0 does not response to the distant, local perturbing potential w(r') outside a sphere of radius R

[1] Prodan, Emil, and Walter Kohn. "Nearsightedness of electronic matter." *Proceedings of the National Academy of Sciences* 102.33 (2005): 11635-11638.

Deep Learning DFT Hamiltonian (DeepH):

Localized Basis:

- Atomic orbitals
- Interact only when overlapped
- Well-defined rotation transformations

Deep Learning DFT Hamiltonian (DeepH):

Localized Basis: Sparseness

- Only H_{ij} between neighboring atoms (within R_C, determined by the spread of orbitals, few Å) are nonzero Nearsightedness Principle:
- Only information of neighborhood (within R_N) should be considered

Deep Learning DFT Hamiltonian (DeepH):

Localized Basis:

- Modeling Hamiltonian blocks from **local interactions**
- Does NOT respond to long-range configurations

Deep Learning DFT Hamiltonian (DeepH):

SE(3) Equivariance vs. Invariance:

- SE(3) (Special Euclidean group in 3D) includes 3 translation transformation and 3 rotation transformation
- SE(3) Invariance:
 - The output does NOT change with the transformation of the input structure

Deep Learning DFT Hamiltonian (DeepH):

SE(3) Equivariance vs. Invariance:

- SE(3) (Special Euclidean group in 3D) includes 3 translation transformation and 3 rotation transformation
- SE(3) Equivariance:
 - The output changes together with the transformation of the input structure

Deep Learning DFT Hamiltonian (DeepH):

SE(3) Equivariance vs. Invariance:

- Invariant quantity: total energy, band gap, ...
- **Equivariant** quantity: \widehat{H}_{DFT} , force field, ...

Deep Learning DFT Hamiltonian (DeepH):

Global coordinates: rotation transformation

The overlaps between orbitals are misoriented

Deep Learning DFT Hamiltonian (DeepH):

Local coordinates: rotation transformation

The overlaps between orbitals remain unchanged

Deep Learning DFT Hamiltonian (DeepH):

Solution to \widehat{H}_{DFT} equivariance requirement:

- Similar to DPMD
- Local coordinates $\{\hat{x}', \hat{y}', \hat{z}'\}$ for bond AB:

$$\hat{x}' = \frac{\boldsymbol{e}_1}{\boldsymbol{e}_1}, \hat{y}' = \frac{\boldsymbol{e}_1 \times \boldsymbol{e}_2}{|\boldsymbol{e}_1 \times \boldsymbol{e}_2|}, \hat{z}' = \hat{x}' \times \hat{y}'$$

•
$$\boldsymbol{e}_1 = \mathbf{r}_{\mathrm{BA}}$$

- e_2 : second nearest \mathbf{r}_{kA} non-parallel to e_1
- Ensure the \widehat{H}_{DFT} element invariant to rotation:

$$t_1 = t_2$$

• $p_{x'}, p_{z'}: p$ orbitals of different angular momentum quantum numbers

 $\mathbf{e}_1 = \mathbf{r}_{\mathsf{BA}}$ $\mathbf{e}_2 = \mathbf{r}_{\mathsf{CA}}$ $= \mathbf{r}_{\mathsf{BA}}$ $p_{x'}$ $\mathbf{e}_2 = \mathbf{r}_{\mathsf{CA}}$ $H'_{\mathsf{A}p_{x'},\mathsf{B}p_{z'}}$ $p_{x'}$ $H'_{\mathsf{A}p_{x'},\mathsf{B}p}$

Deep Learning DFT Hamiltonian (DeepH):

Solution to \widehat{H}_{DFT} equivariance requirement:

• The rotation transformation from DFT global coordinates to local coordinates of bond AB:

$$R^{AB} = (\hat{x}', \hat{y}', \hat{z}')$$

- with $\hat{x}', \hat{y}', \hat{z}'$ being column vectors
- And \hat{H}'_{DFT} under **local coordinates** can be obtained for training:

$$H_{A\alpha,B\beta}' = \sum_{a,b} D_{\alpha,a}^{l_{\alpha}} (R^{AB}) H_{A\alpha,B\beta} D_{b,\beta}^{l_{\beta}} ((R^{AB})^{-1})$$

- where $D^{(l)}$ is the Wigner matrix, and l_{α} is angular momentum quantum number of the orbital α
- The predicted \hat{H}'_{DFT} is transformed back to **global coordinates** to preserve **equivariance**:

$$H_{A\alpha,B\beta} = \sum_{a,b} D_{\alpha,a}^{l_{\alpha}} \left((R^{AB})^{-1} \right) H_{A\alpha,B\beta}' D_{b,\beta}^{l_{\beta}} (R^{AB})$$

Deep Learning DFT Hamiltonian (DeepH):

Crystal graph: consists of vertices v_i and edges e_{ij} within cutoff radius R_C An edge is added between two atoms if the orbitals are overlapped

Deep Learning DFT Hamiltonian (DeepH):

69

Deep Learning DFT Hamiltonian (DeepH):

LCMP Layer: relative orientation information $\hat{\mathbf{r}}_{ik}^{pq}$ of bond ik under local coordinate defined for edge pq is added into the initial edge features, and predict Hamiltonian element $\hat{H}_{i\alpha,j\beta}$

71

Deep Learning DFT Hamiltonian (DeepH):

Performance: trained and tested on graphene 6x6 supercell MD data (containing a variety of configurations)

Deep Learning DFT Hamiltonian (DeepH):

Performance: generalization for 2,000 unseen graphene configurations

Density of State (DOS): distribution of electrons of different energy states Shift current conductivity σ^{yyy} : conductivity of electrons excited by photons of different energy ω

Deep Learning DFT Hamiltonian (DeepH):

Generalization Performance: trained on flat sheet graphene, tested on curved carbon nanotubes

Deep Learning DFT Hamiltonian (DeepH):

Generalization Performance: moiré-twisted bilayer materjals

1.08 $^\circ$ magic angle graphene: **11,164** carbon atoms per unit cell

Deep Learning DFT Hamiltonian (DeepH):

Generalization Performance: moiré-twisted bilayer materials

trained on **non-twisted small** bilayer structures tested on **twisted large** structures Linear complexity for large systems

Deep Learning DFT Hamiltonian (DeepH):

Generalization Performance: trained on non-twisted small bilayer structures, tested on twisted large

Al in Materials Science

Directly Bridging

Deep Learning Approaches: CGCNN

Crystal Graph Convolutional Neural Networks (CGCNN) [1]:

Directly bridging the gap between crystal structures and material properties via GNN Construction of crystal graph:

- Node v_i representing physical properties of atom i
- Edge $e_{(i,j)_k}$ representing the distance between atom *i* and its k-th nearest neighbor *j*

[1] Xie, Tian, and Jeffrey C. Grossman. "Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties." *Physical review letters* 120.14 (2018): 145301.

Deep Learning Approaches: CGCNN

Crystal Graph Convolutional Neural Networks (CGCNN):

The node feature is updated following:

$$v_i^{(t+1)} = v_i^{(t)} + \sum_{j,k} \sigma \left(z_{(i,j)_k}^{(t)} W_f^{(t)} + b_f^{(t)} \right) \bigcirc g \left(z_{(i,j)_k}^{(t)} W_s^{(t)} + b_s^{(t)} \right)$$

Where

$$z_{(i,j)_k}^{(t)} = v_i^{(t)} \oplus v_j^{(t)} \oplus e_{(i,j)_k}$$

And node features are pooled for global properties prediction

 \odot : element-wise production, \oplus : concatenation

Deep Learning Approaches: CGCNN

Crystal Graph Convolutional Neural Networks (CGCNN):

Al in Materials Science

Inverse Problem

Next Level: Inverse Problem

Can we start with the desired properties?

Next Level: Inverse Problem

Denoising Diffusion Probabilistic Models (DDPM) (Lecture 3):

- Mapping unknown data distribution to a known prior distribution (e.g. standard Gaussian)
- Making effective sampling from the original data distribution feasible

Gaussian distribution

data distribution

Crystal Diffusion Variational AutoEncoder (CDVAE) [1]:

[1] Xie, Tian, et al. "Crystal diffusion variational autoencoder for periodic material generation." *arXiv preprint arXiv:2110.06197* (2021).

Crystal Diffusion Variational AutoEncoder (CDVAE): Training:

- Encode crystal structure M into latent representation z with a periodic graph neural network PGNN_{ENC}
- Decode crystal aggregation properties (*c*, *L*, *N*) through MLP_{AGG}
- Denoise corrupted structure $\widetilde{M} = (\widetilde{A}, \widetilde{X}, L)$ conditioned on \boldsymbol{z} through PGNN_{DEC}

Crystal Diffusion Variational AutoEncoder (CDVAE): Generation:

- Sample a latent representation $z \sim \mathcal{N}(0,1)$
- Decode crystal aggregation properties (c, L, N) through MLP_{AGG}
- Randomly initialize a disordered crystal structure \widetilde{M} according to (c, L, N)
- Denoise corrupted structure $\widetilde{M} = (\widetilde{A}, \widetilde{X}, L)$ conditioned on \boldsymbol{z} through PGNN_{DEC}

Crystal Diffusion Variational AutoEncoder (CDVAE): Property optimization:

- Jointly trained property predictor: $\tilde{P} = F_{MLP}(z)$
- Optimize latent using back propagation (BP) for 5,000 steps
- Decode 10 crystal structures every 500 steps from the latent trajectory
- Select one best structure with closest \tilde{P} predicted by an individual predictor

MatterGen [1]: Tailored diffusion process for crystalline materials:

 $q(\mathbf{A}_{t+1}, \mathbf{X}_{t+1}, \mathbf{L}_{t+1} | \mathbf{A}_t, \mathbf{X}_t, \mathbf{L}_t) = q(\mathbf{A}_{t+1} | \mathbf{A}_t) q(\mathbf{X}_{t+1} | \mathbf{X}_t) q(\mathbf{L}_{t+1} | \mathbf{L}_t)$

• Atom types:
$$\boldsymbol{A} = (\boldsymbol{a}_1, \boldsymbol{a}_2, \dots, \boldsymbol{a}_N) \in \mathbb{A}^N$$

- Atom fractional coordinates: $X = (x_1, x_2, ..., x_N) \in [0, 1)^{N \times 3}$
- Lattice: $\boldsymbol{L} = (\boldsymbol{l}_1, \boldsymbol{l}_2, \boldsymbol{l}_3) \in \mathbb{R}^{3 \times 3}$

MatterGen:

Tailored diffusion process for crystalline materials:

• Atom type *A*:

$$q(\boldsymbol{a}_t | \boldsymbol{a}_{t-1}) = \operatorname{Cat}(\boldsymbol{a}_t; \boldsymbol{p} = \boldsymbol{a}_{t-1} \boldsymbol{Q}_t)$$

- Cat(a; p): categorical distribution over 1-hot vectors whose probabilities are given by the row vector p
- $[\mathbf{Q}_t]_{ij} = q(a_t = j | a_{t-1} = i)$: Markov transition matrix at time step t

$$[\mathbf{Q}_t]_{ij} = \begin{cases} 1 & i = j = m \\ 1 - \beta_t & i = j \neq m \\ \beta_t & j = m \neq i \\ 0 & m \neq i \neq j \neq m \end{cases}$$

- β_t : probability of transiting to a **MASK** state
- $1 \beta_t$: probability of staying unchanged

MatterGen:

Tailored diffusion process for crystalline materials:

• Fractional coordinates X:

$$q(\boldsymbol{x}_t | \boldsymbol{x}_0) = \mathcal{N}_W(\boldsymbol{x}_t; \boldsymbol{x}_0, \sigma_t^2 \boldsymbol{I})$$

• \mathcal{N}_W : wrapped normal distribution preserving periodic boundary condition (PBC)

$$\mathcal{N}_{W}(\boldsymbol{x}_{t};\boldsymbol{x}_{0},\sigma_{t}^{2}\boldsymbol{I}) = \sum_{\boldsymbol{k}\in\mathbb{Z}^{3}}\mathcal{N}(\boldsymbol{x}_{t};\boldsymbol{x}_{0}-\boldsymbol{k},\sigma_{t}^{2}\boldsymbol{I})$$

MatterGen:

Tailored diffusion process for crystalline materials:

- Lattice *L*:
- Naïve diffusion process:

$$q(\boldsymbol{L}_t|\boldsymbol{L}_0) = \mathcal{N}(\sqrt{\overline{\alpha}_t}\boldsymbol{L}_0, (1-\overline{\alpha}_t)\boldsymbol{I})$$

- Leads to extremely narrow and small lattices
- Custom limiting mean & variance:

$$q(\boldsymbol{L}_t|\boldsymbol{L}_0) = \mathcal{N}(\sqrt{\bar{\alpha}_t}\boldsymbol{L}_0 + (1 - \sqrt{\bar{\alpha}_t})\boldsymbol{\mu}(n)\boldsymbol{I}, (1 - \bar{\alpha}_t)\sigma_t^2(n)\boldsymbol{I})$$

• which yields the limit distribution for $T \rightarrow \infty$:

$$q(\boldsymbol{L}_T) = \mathcal{N}(\mu(n)\boldsymbol{I}, \sigma_T^2(n)\boldsymbol{I})$$

- where $\mu(n) = \sqrt[3]{nc}$, $\sigma_T^2(n) = \sqrt[3]{nv}$
- *c*: inverse average atomic density of the dataset
- *v*: average unit cell volume of the dataset
- The signal-to-noise-ratio at T is therefore independent to the number of atoms n:

$$SNR = \lim_{T \to \infty} \frac{|\mu(n)|}{\sigma(n)} = \sqrt[3]{\frac{c}{v}}$$

MatterGen:

Tailored diffusion process for crystalline materials:

MatterGen:

Conditional generation of materials:

Fine-tuned for different tasks with a **frozen base model**

Al in Materials Science

Al as a Powerful Assistance

Al as a Powerful Assistance:

Transmission Electron Microscopy (TEM)

Scanning Tunneling Microscopy (STM)

Analysis & Interpretation

Crystal structure

Single crystal Si

Al as a Powerful Assistance: CrySTINe

Crystal Structure-Type Identification Network (CrySTINet) [1]:

Input the XRD pattern of an unknown compound

Choose the **most probable structure type** as the final result

[1] Chen, Litao, et al. "Crystal Structure Assignment for Unknown Compounds from X-ray Diffraction Patterns with Deep Learning." *Journal of the American Chemical Society* 146.12 (2024): 8098-8109.

Al as a Powerful Assistance: CrySTINe

Crystal Structure-Type Identification Network (CrySTINet):

Cosine similarity as an extra criterion

4-D Scanning Transmission Electron Microscopy (4D-STEM) :

- Each pixel in real-space corresponds to a 2-D diffraction pattern
- Each diffraction pattern contains **local structure information** within the *nm* range
- 4D-STEM data can easily reach GBs
- Statistical or computational approaches for interpretation are indispensable

4D-STEM Data Analysis [1]:

Hierarchical k-means clustering

Features of different scales are clustered sequentially

[1] Kimoto, Koji, et al. "Unsupervised machine learning combined with 4D scanning transmission electron microscopy for bimodal nanostructural analysis." *Scientific Reports* 14.1 (2024): 2901.

4D-STEM Analysis:

Features of different scales are clustered sequentially

4D-STEM Analysis:

GNoME:

GNoME:

Discovered up to 380,000 computationally stable structures never found before

Recipe optimization Phase identification [1] Szymanski, Nathan J., et al. "An autonomous laboratory for the accelerated synthesis of novel materials." *Nature* 624.7990 (2023): 86-91.

107

108
Al as a Powerful Assistance: Material Discovery

Al as a Powerful Assistance :

Al in Materials Science

Outside and Beyond Crystals

Outside of the Crystals: Amorphous Materials

AI in Polymer Science:

- Input polymer electrolyte structure and formula
- Predicating ionic conductivities σ by predicting pre-exponential factor A and activation energy E_a in the Arrhenius equation:

$$\ln(\sigma) = \ln(A) - \frac{E_a}{RT}$$

Beyond Crystals: MetaMaterials

Metamaterials based on prescribed mechanical behavior [1]

- Mechanical properties determined by mm scale topology (10 mm unit cell)
- Inverse design of topology structure with the target compressive behavior in the form of curve features

[1] Ha, Chan Soo, et al. "Rapid inverse design of metamaterials based on prescribed mechanical behavior through machine learning." Nature Communications 14.1 (2023): 5765.

Beyond Crystals: MetaMaterials

Shape-programmable 3D kirigami metamaterials [1]

• Inverse design of cut layout with the desired deformation

[1] Alderete, Nicolas A., Nibir Pathak, and Horacio D. Espinosa. "Machine learning assisted design of shape-programmable 3D kirigami metamaterials." npj 114 Computational Materials 8.1 (2022): 191.

Useful Resources:

- A Tutorial on Density Functional Theory: <u>https://www.researchgate.net/publication/226474665_A_Tutorial_on_Density_Functional_Theory</u>
- Material Project: <u>https://next-gen.materialsproject.org/</u>
- MP Seminar Inverse Design: Why Aren't We There Yet?: https://youtu.be/0I07QNAexRc?si=EaNuCcuwwDIDfBxM
- MP Seminar MatterGen: <u>https://youtu.be/Smz1go6_Spo?si=xnU8kXWNFVIYf-Zf</u>

Additional materials

Physical properties derived from the DFT Hamiltonian

- Band structure and DOS:
 - The eigenvalues ε_{nk} and eigenstates v_{nk} of the Hamiltonian \widehat{H} at band n and wavevector k can be obtained by solving the generalized eigenvalue problem: $H(k)v_{nk} = \varepsilon_{nk}S(k)v_{nk}$
 - where the overlap matrix S is obtained by the inner product of the basis at very low computational cost
 - ε_{nk} of at band n and wavevector k construct the band structure
 - DOS is obtained by integrating the number of electronic in momentum space in the band structure over each value of energy:

$$D(E) = \int \delta(E - E(\mathbf{k})) d^3\mathbf{k}$$

Physical properties derived from the DFT Hamiltonian

• Shift current conductivity σ^{abc} : $\sigma^{abc}(\omega) = \frac{\pi e^3}{\hbar^2} \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \times \sum_{n,m} f_{nm} \operatorname{Im}(r_{mn}^b r_{nm}^{c,a} + r_{mn}^c r_{nm}^{b,a}) \delta(\omega_{mn}(\mathbf{k}) - \omega)$

•
$$\omega_{mn}(\mathbf{k}) = \frac{E_{nk} - E_{mk}}{\hbar}$$
: difference of energy eigenvalues

- $f_{nm} = f_n(\mathbf{k}) f_m(\mathbf{k})$: Fermi–Dirac occupations of bands n and m at wavevector \mathbf{k}
- r_{mn}^{a} and $r_{nm}^{b,a} = \frac{\partial r_{nm}^{b}}{\partial k^{a}} i(r_{nn}^{a} r_{mm}^{a})r_{nm}^{b}$ are Berry connection and its general derivative, calculated with the DFT Hamiltonian using the method developed in ref [1]

[1] Wang, Chong, et al. "First-principles calculation of optical responses based on nonorthogonal localized orbitals." *New Journal of Physics* 21.9 (2019): 093001.