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What are Materials?

• Fundamental building blocks of modern life
• Every piece of solid thing you can touch around you

• The history of human civilization is also the history of how humans 
exploit different kinds of materials

Stone Age
3.4 to 1 million years ago 

Bronze Age
3300 BC to 1200 BC

Iron Age
1200 BC to c. 550 BC 
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Why do we Care about Materials?

• Necessity:
• Everything is made out of something
• Materials selection is critical to design and performance

• Ambition:
• New materials = new opportunities
• Ex: transistor to integrated circuit

• Fear:
• Most failures are materials failures
• Ex: aircraft accident due to material fracture
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Classification of Materials: Two Categories

• Crystalline Materials:
• Atoms are arranged in a periodic pattern 

repeated throughout the material
• Ex: diamond, most of semiconductors and 

metals

• Amorphous Materials:
• No systematic and regular pattern of 

atom arrangements
• Ex: glass, plastic, rubber

Fundamental difference: Long-range Order of Atoms

Generally speaking: 
• Most of crucial functional applications rely on crystalline materials
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Intro to Materials Science
Crystalline Materials 
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Crystalline Materials: 

Atomic Resolution TEM HAADF Image 
of Crystalline Material [1]

• Periodic repeating pattern of atoms can be 
clearly observed

• But how to properly describe such structures?

8

[1] Mazet, L., et al. (2015). A review of molecular beam epitaxy of ferroelectric BaTiO3 films on Si, Ge and 
GaAs substrates and their applications. Science and Technology of Advanced Materials, 16(3).



Crystalline Materials: 

Atomic Resolution TEM HAADF Image 
of Crystalline Material

• Fundamental Truth:
• The crystal consists of identical atom groups 

as minimal repeating units
• The crystal is constructed by duplicating its 

repeating unit following a certain pattern

Identical 
Atom Groups 

9



Crystalline Materials: 

Atomic Resolution TEM HAADF Image 
of Crystalline Material

• Minimal repeating unit:
• Unit Cell
• The position of each atom is described by a fractional 

coordinate in the cell:
• Ex: Ti atom at the body center

𝐓𝐢 =
1
2
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2
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2
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• Ex: O atom at the top center
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Identical 
Atom Groups 
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Crystalline Materials: 

Atomic Resolution TEM HAADF Image 
of Crystalline Material

• Minimal repeating unit:
• Unit Cell

• Repeating pattern:
• Lattice Grid

Identical 
Atom Groups 

Each Unit Cell can be 
abstracted as a blue dot
in the Lattice Grid
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Crystalline Materials: 

Atomic Resolution TEM HAADF Image 
of Crystalline Material

Lattice Grid:
• Similar to the Cartesian coordinate 

system, defined by a set of basis 
Lattice Vectors:

𝒍", 𝒍#, 𝒍$

• The angles between lattice vectors 
is defined as lattice angles:

𝛼, 𝛽, 𝛾
• Together, they are defined as 

Lattice Constant

Identical 
Atom Groups 

𝟎 𝒍%

𝛼
𝛾

𝛽

𝟎

𝒍&𝒍'

𝒍%

𝒍&
𝒍'
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Crystalline Materials: 
• In our example: Cubic BaTiO3

𝒂 = 𝒃 = 𝒄 = 4.01	Å
𝛼 = 𝛽 = 𝛾 = 90°

• Ps. 1	Å = 0.1	nm
• Mathematically, structure of a crystalline material 𝓜 can be represented as:

𝓜= (𝐴,𝑿, 𝑳)
• 𝐴 ∈ ℤ% : vector of atomic numbers of 𝑛 atoms in the Unit Cell
• 𝑿 = 𝒙", 𝒙#, … , 𝒙% ∈ ℝ$×% : tensor of fractional atom coordinates
• 𝑳 = 𝒍", 𝒍#, 𝒍$ ∈ ℝ$×$ : tensor of Lattice Vectors

• Given the Unit Cell, repeat along the Lattice Vectors, you are now able to 
reconstruct the ENTIRE crystal!

𝒍%

𝛼
𝛾

𝛽

𝟎

𝒍&𝒍'

𝒍%

𝒍&
𝒍'
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Crystalline Materials: 𝓜= (𝐴,𝑿, 𝑳)

• 𝐴 ∈ ℤ% : vector of atomic numbers of 𝑛 atoms in the Unit Cell
• 𝑿 = 𝒙", 𝒙#, … , 𝒙% ∈ ℝ$×% : tensor of fractional atom coordinates
• 𝑳 = 𝒍", 𝒍#, 𝒍$ ∈ ℝ$×$ : tensor of Lattice Vectors
• Crystal structure 𝓜 has properties as follow: 

• Real space coordinates 𝑪 of atoms can be obtained as:
𝑪𝐓 = 𝑿𝐓 E 𝑳

• Periodicity: 
𝒙() = 𝒙( + 𝒕 E 𝑳

𝒕 ∈ ℤ$
• coordinates of atoms with same index 𝑖 in the periodic expanded space can 

be obtained by adding a combination of integer multiple lattice vectors

𝒍%

𝛼
𝛾

𝛽

𝟎

𝒍&𝒍'

𝒍%

𝒍&
𝒍'

𝟎 14



Crystal Structures:

• 7 crystal systems and 14 Bravais lattices

• spatial arrangement of atoms determines 
the material properties
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Intro to Materials Science
Structure-Property Relationship
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The Essence of Materials Science

• The fundamental research subject can be summarized as:
Structure-Property Relationship

• Structure:
• Composition: kind and fraction of atoms present
• Microstructure: how those atoms are arranged in the materials

• Property:
• Isotropic: orientation-irrelevant, e.g. density, heat capacity, melting point
• Anisotropic: e.g. polarity, magnetization, piezoelectricity
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Structure-Property Relationship

• Ex: Piezoelectric ceramics BaTiO3

• Structure:
• Composition: Ba:Ti:O = 1:1:3
• Microstructure: described as Fig.a

• Property:
• Isotropic: 

• density = 6.02 g/cm3,
• melting point = 1,625 °C

• Anisotropic: 
• piezoelectricity along the polarization (z-axis in Fig.b)

+_

18



Structure-Property Relationship

Nitinol

Kevlar

Si

Determines

Shape-memory Alloy

Semiconductor

Bullet-proof Fiber

Phase-transfer 
Temperature

Stiffness
Mechanical 

Strength

Band-gap

Carrier Mobility

Thermostability

Glass-transition 
Temperature

Degradation Rate

…...
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Experimental Approaches 

Structure

Preparation

Material
(Shape-memory heart stent)

Experiments

Properties

Structure-Property
Relationship
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Experimental Approaches 

Structure

Preparation Experiments

Properties

Structure-Property
Relationship

Material
(Shape-memory heart stent)
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Experimental Approaches 

Structure

Composition

Ni(Ti%)(
Preparation

Experiments

Characterization

Properties

Structure-Property
Relationship

Material
(Shape-memory heart stent)
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Experimental Approaches 

• Limitations:
• Desired structure can not be prepared with precise, atomic-

level control
• Property of many structures worth studying is unable to be 

determined experimentally
• High experimental costs and low efficiency

Structure

Preparation
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Theoretical Approaches 

Band Structure of 
Intrinsic Semiconductor (Si) 

Valence Band
(e- are immobilized)

Conduction Band
(e- are free to move)

x

En
er

gy

𝐸*

𝒆!

𝒆!

Si

• The valence band of Si is fully filled and the conduction band is empty, 
preventing the electrons from traveling through the material

• The electrons need to be excited across the band gap by thermal or 
external energy

• Therefore, the conductivity of Si at temperature 𝑇 can be approximated:

𝜎 ≈ 𝑁"𝑒𝜇# exp
𝐸$
𝑘𝑇

• Here 𝑁* is number of electrons per unit volume, 𝜇* is the carrier 
mobility of electron

𝐸7
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Theoretical Approaches 

Si• Limitations:
• Lots of assumptions and approximations have to be applied to 

the theory 
• Ignored some of the complex micro-scale interactions
• Limited application scenarios 

Band Structure of 
Intrinsic Semiconductor (Si) 

Valence Band
(e- are immobilized)

Conduction Band
(e- are free to move)

x

En
er

gy

𝐸*

𝒆!

𝒆!

𝐸7
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Intro to Materials Science
DFT Calculation
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Computational Approaches
• Can we try to compute the material properties purely from its structures?

• Ab initio Calculations: from electrons to properties

• Wave Function of electron: 
Ψ 𝒓, 𝑡

• Probability Density: 
Ψ∗ 𝒓, 𝑡 Ψ(𝒓, 𝑡) = Ψ 𝒓, 𝑡 #

• Schrödinger Equation: 
O𝐻Ψ 𝒓, 𝑡 = 𝑖ℏ

𝜕
𝜕𝑡
Ψ(𝒓, 𝑡)

• where the Hamiltonian operator is:

O𝐻 = −
ℏ#

2𝑚
∇# + V𝑉

• Time-Independent Schrödinger Equation:
O𝐻𝜓 𝒓 = 𝐸𝜓 𝒓

𝐸", 𝜓";
	 	 	 	 	 …

……𝒑!
𝒆"

%
%𝐻	
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Ab initio Calculations: Schrödinger equation

Si
112 𝑒! per unit cell

• Works fine for single electron system: H atom, hydrogenic ions (He+, Li2+)
• Directly solving the many-electron Schrödinger equation is currently computationally impossible, 

with complexity exponential to 𝑁, the number of electrons in the system
• Schrödinger Equation: 

O𝐻Ψ 𝒓, 𝑡 = 𝑖ℏ
𝜕
𝜕𝑡
Ψ(𝒓, 𝑡)

• Many-Body Calculation:

O𝐻𝜓 𝑹 = V𝑇 + V𝑉 + O𝑈 𝜓 𝑹 = 𝐸𝜓 𝑹

]
(,"

-

−
ℏ#

2𝑚(
∇(# +]

(,"

-

𝑉 𝒓( +]
(./

-

𝑈 𝒓(, 𝒓/ 𝜓 = 𝐸𝜓
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Ab initio Calculations: Hartree-Fock Method 

• Hartree-Fock Method (HF): Self-Consistent Field (SCF)
• Assuming each electron is in an average potential field generated by all the other electrons:

𝑈 𝒓(, 𝒓/ = 𝑉 𝒓( = 𝑉 𝑹/.(
• then:

O𝐻(
%0" 𝜓(

% 𝒓( = 𝐸(𝜓(
(%) 𝒓(

• Hohenberg-Kohn (HK) Theorems:
• Electron Density:

𝜌* 𝒓 = 𝑁_𝑑𝒓"…_𝑑𝒓-𝜓*∗ 𝑹 𝜓* 𝑹

• Total Energy:
𝐸* 𝜌* = 𝜓*∗ 𝜌* O𝐻𝜓* 𝜌*

• HK Theorems proof: https://people.chem.ucsb.edu/metiu/horia/OldFiles/115C/KH_Ch4.pdf

converge

𝜓&
'

𝑛 += 1
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Ab initio Calculations: DFT

• Density Functional Theory (DFT):
• Assumes that the property of the system is determined by electron density 𝜌 
• Treats the energy as the functional of electron density (3 variables), instead of 

trying to solve the entire wave function in the Schrödinger Equation (Nx3 variables)
• The target of DFT calculation is to solve the Kohn-Sham equation:

−
ℏ∇#

2𝑚 + 𝑣$% 𝜌 𝒓 𝜑& 𝒓 = 𝜀&𝜑& 𝒓

• Where 𝜌 is defined in terms of the Kohn-Sham wave functions 𝜑&:

𝜌 𝒓 =-
&

𝜑& 𝒓 #

Walter Kohn Lu Jeu Sham
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Ab initio Calculations: DFT

• Density Functional Theory (DFT):
• The Kohn-Sham potential 𝑣=> consists of 3 terms: 

• External potential 𝑣'(): generated by the nucleus
• The Hartree potential 𝑣*+,),'': the Coulomb repulsion between electrons
• Exchange-correlation potential 𝑣(-: complex quantum mechanical interactions

𝑣$% 𝜌 𝒓 = 𝑣'() 𝒓 + 𝑣*+,),'' 𝜌 𝒓 + 𝑣(- 𝜌 𝒓
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Density Functional Theory (DFT): Step 1

Similar to the H-F method, DFT applies self-consistency (SC) calculation:
1. Initialize electron density 𝜌?(𝒓)	to start the iterative procedure

• In principle, any random positive function normalized to the total number of 
electrons is acceptable

• A reasonable initiation can speed up convergence, e.g.:

𝜌. 𝒓 =-
/

𝜌/ 𝒓 − 𝑹/

• Where 𝑹/  and 𝜌/  represents the position and atomic density of the nucleus
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Density Functional Theory (DFT): Step 2

2. Calculate Kohn-Sham potential 𝑣=> = 𝑣@(A + 𝑣BCDAD@@ + 𝑣(E:
• The external potential	𝑣'() is typically the sum of nuclear potentials:

𝑣'() 𝒓 =-
/	

𝑣/ 𝒓 − 𝑹/

• Where 𝑣/  can be the Coulomb potential with the nuclear charge 𝑍/:

𝑣/ 𝒓 = −
𝑍/
𝑟

• Or use other predefined pseudo-potentials for 𝑣/  depending on systems and tasks
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Density Functional Theory (DFT): Step 2

2. Calculate Kohn-Sham potential 𝑣=> = 𝑣@(A + 𝑣BCDAD@@ + 𝑣(E:
• The Hartree potential 𝑣*+,),'' can be calculated by either direct integration:

𝑣*+,),'' 𝒓 = 2
𝜌 𝒓1

𝒓 − 𝒓1 𝑑
2𝒓1

• Or solving Poisson’s equation:
∇#𝑣*+,),'' 𝒓 = −4𝜋𝜌 𝒓
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Density Functional Theory (DFT): Step 2

2. Calculate Kohn-Sham potential 𝑣=> = 𝑣@(A + 𝑣BCDAD@@ + 𝑣(E:
• The exchange-correlation potential 𝑣(- consists of all the other non-classical 

interactions between electrons, defined as functional derivative of exchange-
correlation energy:

𝑣34 𝜌 𝒓 =
𝛿𝐸(-
𝛿𝜌 𝒓

• The exchange-correlation energy 𝐸(- can be calculated with different designs and 
approximations, for example the simplest local-density approximation (LDA):

𝐸(- = 2𝑑2𝒓	ε*56 𝜌 𝒓

• Where ε*56 𝜌  is the exchange-correlation energy per unit volume of homogeneous 
electron gas (HEG) of a given density 𝜌, which can be tabulated for different densities
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Density Functional Theory (DFT): Step 3

3. Solving the Kohn-Sham equation:

−
ℏ∇#

2𝑚
+ 𝑣$% 𝜌 𝒓 𝜑& 𝒓 = 𝜀&𝜑& 𝒓

9𝐻$%𝜑& 𝒓 = 𝜀&𝜑& 𝒓

• Where 9𝐻$% = − ℏ∇(

#9
+ 𝑣$% 𝜌 𝒓  is the Kohn-Sham Hamiltonian operator

• Apply the Hamiltonian operator to the basis set 𝜙& 𝑟  to obtain Hamiltonian matrix 𝐻$%:

𝐻&: = 2𝜙&∗ 𝒓 9𝐻𝜙: 𝒓 𝑑𝒓
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Density Functional Theory (DFT): Step 3

3. Solving the Kohn-Sham equation:
• The Hamiltonian matrix 𝑯$% is an 𝑁×𝑁 symmetrical matrix
• 𝑁 is the total number of basis functions, with the basic assumption in DFT that the Kohn-

Sham wave function is the linear combination of the basis set 𝜙& 𝑟 :

𝜑& 𝒓 =-
:

𝑐&:𝜙:(𝒓)

• Where 𝑐&: is the are the coefficients of the basis functions in the expansion of the ith 
Kohn-Sham wave function 𝜑&

• Thus, each element 𝐻&: in the 𝐻$% describes the interaction between basis 𝜙& and 𝜙:
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Density Functional Theory (DFT): Step 3

3. Solving the Kohn-Sham equation:
• Once the Kohn-Sham Hamiltonian matrix 𝑯$% is constructed, the Kohn-Sham equations 

turned into an eigenvalue problem:
𝑯$%𝑪 = 𝑬𝑪	

• where 𝑪 is the matrix of coefficients, and 𝑬 is the diagonal matrix of eigenvalues (orbital 
energies)

• Then, the Kohn-Sham wave functions can be constructed using 𝑪 and basis set:

𝜑& 𝒓 =-
:

𝑐&:𝜙:(𝒓)
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Density Functional Theory (DFT): Step 4&5

4. Calculate new electron density from obtained wave functions:
𝜌< 𝒓 =-

&

𝜑& 𝒓 #

5. Compare 𝜌% 𝒓  and initial guess 𝜌? 𝒓 :
• If the difference between two densities is lower than a user-defined criterion 𝜂:

𝜌< 𝒓 − 𝜌. 𝒓 < 𝜂
• The calculation is considered as self-consistent
• With correctly calculated form of wave functions and Hamiltonian matrix, several 

observables can be evaluated, including total energy, band structure, conductivity, etc.
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Density Functional Theory (DFT): Iteration

6. If the convergence criterion has not been reached:
• A new iteration begins with 𝜌.1 𝒓  of several different options:

• A random guess again
• Use the output of the previous cycle: always leads to instabilities
• Mix the last output and the original input:

𝜌*) 𝒓 = 𝛽𝜌* 𝒓 + (1 − 𝛽)𝜌" 𝒓
• The mixing parameter 𝛽 is typically chosen to be around 0.3
• Other mixing strategies similar to the one above

• Repeat step 2 to 5 until converged, highly dependent on calculation conditions and 
hyperparameters
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Density Functional Theory (DFT): Iteration
𝜌"(𝑟)

𝑣)*(𝑟)

K𝐻)*𝜑& 𝒓 = 𝜀&𝜑& 𝒓

𝜌 𝒓 =O
&

𝜑& 𝒓 +

Converged?

end

Yes

No
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Density Functional Theory (DFT): Limitations

• Jacob’s Ladder:
• The accuracy of DFT calculation 

mainly depends on the choice of 
exchange-correlation functional

• More complexity brings better 
accuracy, but also higher expenses

42



Density Functional Theory (DFT): Limitations
• DFT calculation is still computationally 

expensive
• Especially for large-scale structures 

consists 103 atoms

Complexity: 𝑂 𝑁,

DefectsAlloy Surface
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AI in Materials Science
Artificial intelligence ab initio (AI2) methods
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Deep Learning Approaches: Data Driven

Database Models Properties

Training Inference
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Deep Learning Approaches: DPMD
Deep Potential Molecular Dynamics (DPMD):

• In each frame of the ab initio molecular dynamics 
(AIMD) simulation, the potential surface 
𝐸 𝑹", 𝑹#, … , 𝑹-  of the structure is determined 
through Quantum Mechanics (QM) calculation, where 
the 𝑹( is the coordinates of the atom 𝑖

• The forces on each atom can be calculated as the 
negative derivative of potential to the coordinates:

𝑭( = −∇𝐸 = −
𝜕𝐸
𝜕𝑥(

,
𝜕𝐸
𝜕𝑦(

,
𝜕𝐸
𝜕𝑧(

47



Deep Learning Approaches: DPMD
Deep Potential Molecular Dynamics (DPMD):

• MD computes the half-step velocities of the atoms 
according to the forces and simulation time step Δ𝑡:

𝒗& 𝑡 +
Δ𝑡
2

= 𝒗& 𝑡 +
Δ𝑡
2
𝒂& 𝑡

• Where 𝒂& 𝑡 = 𝑭!(/)
1!

 is the acceleration

• At last, MD computes the atom coordinates and full-step 
velocities, generating a new frame:

𝑹& 𝑡 + Δ𝑡 = 𝑹& 𝑡 + Δ𝑡𝒗& 𝑡 +
Δ𝑡
2

𝒗& 𝑡 + Δ𝑡 = 𝒗& 𝑡 +
Δ𝑡
2 +

Δ𝑡
2 𝒂& 𝑡 + Δ𝑡

• Since each iteration involves QM calculation, AIMD can be 
extremely time and energy consuming

48



Deep Learning Approaches: DPMD
Deep Potential Molecular Dynamics (DPMD) [1]:

• In the DPMD framework, a set of local orthogonal unit 
bases 𝒆3, 𝒆4, 𝒆5  centered in the target atom 𝑖 is 
constructed:
• 𝒆3: parallel to the O-H bond
• 𝒆5: perpendicular to H-O-H water molecule plane
• 𝒆4: 𝒆5×𝒆3

• The relative coordinate of a neighboring atom 𝑗 can be 
determined:

𝑹(/ = 𝑥(/𝒆3 + 𝑦(/𝒆4 + 𝑧(/𝒆5
• The input coordinates of the Neural Network (NN) can be:

• With both radial and angular information:
𝑫(/ = 1/𝑹(/, 𝑥(//𝑹(/# , 𝑦(//𝑹(/# , 𝑧(//𝑹(/# ,

• Or with radial information only:
𝑫(/ = 1/𝑹(/

49
[1] Zhang, Linfeng, et al. "Deep potential molecular dynamics: a scalable model with the 
accuracy of quantum mechanics." Physical review letters 120.14 (2018): 143001.



Deep Learning Approaches: DPMD
Deep Potential Molecular Dynamics (DPMD):

• In the DPMD workflow, the relative coordinates 
𝑹(/ (,",#,…

are first computed from absolute 

coordinates 𝑹, then converted into 𝑫(/ (,",#,…
• The NN outputs the energy of each atom 𝐸( and 

sum them together to obtain the total energy 𝐸
• The loss function is defined as a multi-task loss:

𝐿 = 𝑝8Δ𝜖# +
𝑝9
3𝑁

]
(

Δ𝑭( # +
𝑝:
9

Δ𝜉 #

• Consists of 3 terms:
• Energy per atom 𝜖
• Force on each atom 𝑭(, 
• Virial tensor 𝜉 (measures internal stress) 

• Where factors 𝑝 are loss weight
50
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Deep Learning Approaches: DPMD
Deep Potential Molecular Dynamics (DPMD):

• Relaxation: structures are updated iteratively through 
AIMD, evolving from an unstable structure to a 
balanced state

• Comparing the interatomic distance distribution after 
relaxation via both AIMD and DPMD, the obtained 
balanced structures fit quite well

• Recall that the NN does not directly predict the 
interatomic distance, exhibiting the convincing 
accuracy of the deep potential force field
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Deep Learning Approaches: DPMD
Deep Potential Molecular Dynamics (DPMD):

• Since the time complexity of DPMD is 𝑂(𝑁), 
it tremendously lowers the computation 
costs, especially for larger systems
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Deep Learning Approaches: DeepH
Deep Learning DFT Hamiltonian (DeepH) [1]:

Tips about DFT Hamiltonian O𝐻;<!:
• Recall that O𝐻;<! describes the interactions between 

basis functions {𝜙(}
• O𝐻;<! is determined by the structure 𝓡
• Many observables are deterministically computed 

from O𝐻;<!
• O𝐻;<! has to be obtained through computational 

expensive SCF calculation

53
[1] Li, He, et al. "Deep-learning density functional theory Hamiltonian for efficient ab initio 
electronic-structure calculation." Nature Computational Science 2.6 (2022): 367-377.



Deep Learning Approaches: DeepH
Deep Learning DFT Hamiltonian (DeepH):

Modeling Structure-2𝐻WXY Relationship
||

Modeling Structure-Property Relationship
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Deep Learning Approaches: DeepH
Deep Learning DFT Hamiltonian (DeepH):

Fundamental Facts:
• DFT does support high-accuracy calculation with 

acceptable expenses for small systems
• DFT is NOT suitable for calculating large systems 

Key Problem:
• How to learn from small system DFT data and 

expand/generalize to large systems?
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Deep Learning Approaches: DeepH
Deep Learning DFT Hamiltonian (DeepH):

Challenges:
1. Infinite dimension of O𝐻;<! in the extended systems
2. SO(3) Rotation Equivariance of O𝐻;<!

𝓡 K𝐻345 
56



Deep Learning Approaches: DeepH
Deep Learning DFT Hamiltonian (DeepH):

Important Prior Physics Knowledge: Nearsightedness Principle [1]
• In the many-body system, local electron properties at 𝑟*	does not response to the distant, 

local perturbing potential 𝑤 𝑟) 	outside a sphere of radius 𝑅

Unperturbed external potential

57[1] Prodan, Emil, and Walter Kohn. "Nearsightedness of electronic matter." Proceedings of 
the National Academy of Sciences 102.33 (2005): 11635-11638.



Deep Learning Approaches: DeepH
Deep Learning DFT Hamiltonian (DeepH):

Localized Basis:
• Atomic orbitals
• Interact only when overlapped
• Well-defined rotation transformations 
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Deep Learning Approaches: DeepH
Deep Learning DFT Hamiltonian (DeepH):

Localized Basis: Sparseness
• Only 𝐻(/ between neighboring atoms (within 𝑅=, 

determined by the spread of orbitals, few Å) are nonzero
Nearsightedness Principle:
• Only information of neighborhood (within 𝑅-) should be 

considered
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Deep Learning Approaches: DeepH
Deep Learning DFT Hamiltonian (DeepH):

Localized Basis: 
• Modeling Hamiltonian blocks from local interactions
• Does NOT respond to long-range configurations

60



Deep Learning Approaches: DeepH
Deep Learning DFT Hamiltonian (DeepH):

SE(3) Equivariance vs. Invariance:
• SE(3) (Special Euclidean group in 3D) 

includes 3 translation transformation 
and 3 rotation transformation

• SE(3) Invariance:
• The output does NOT change with 

the transformation of the input 
structure

• Prof. Wu
• Black hair
• Smiling

• Prof. Wu
• Black hair
• Smiling

SE(3) 
Transformation Invariant
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Deep Learning Approaches: DeepH
Deep Learning DFT Hamiltonian (DeepH):

SE(3) Equivariance vs. Invariance:
• SE(3) (Special Euclidean group in 3D) 

includes 3 translation transformation 
and 3 rotation transformation

• SE(3) Equivariance:
• The output changes together with 

the transformation of the input 
structure

• Thumb up
• Bangs to the right

• Thumb down
• Bangs to the left

SE(3) 
Transformation Equivariant
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Deep Learning Approaches: DeepH
Deep Learning DFT Hamiltonian (DeepH):

SE(3) Equivariance vs. Invariance:
• Invariant quantity: total energy, band gap, …
• Equivariant quantity: O𝐻;<!, force field, …
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Deep Learning Approaches: DeepH
Deep Learning DFT Hamiltonian (DeepH):

Global coordinates: rotation transformation

The overlaps between orbitals are misoriented
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Deep Learning Approaches: DeepH
Deep Learning DFT Hamiltonian (DeepH):

Local coordinates: rotation transformation

The overlaps between orbitals remain unchanged

65



= 𝑡#

= 𝑡"

Deep Learning Approaches: DeepH
Deep Learning DFT Hamiltonian (DeepH):

66

Solution to O𝐻;<! equivariance requirement:
• Similar to DPMD
• Local coordinates x𝑥), x𝑦), �̂�)  for bond AB:

x𝑥) =
𝒆"
𝒆"
, x𝑦) =

𝒆"×𝒆#
𝒆"×𝒆#

, �̂�) = x𝑥)×x𝑦)

• 𝒆" = 𝐫>?
• 𝒆#: second nearest 𝐫@?	non-parallel to 𝒆%
• Ensure the O𝐻;<! element invariant to rotation:

𝑡" = 𝑡#
• 𝑝3# , 𝑝5#: 𝑝 orbitals of different angular 

momentum quantum numbers



Deep Learning Approaches: DeepH
Deep Learning DFT Hamiltonian (DeepH):

67

Solution to O𝐻;<! equivariance requirement:
• The rotation transformation from DFT global coordinates to local coordinates of bond AB:

𝑅AB = x𝑥), x𝑦), �̂�)
• with x𝑥), x𝑦), �̂�) being column vectors
• And O𝐻);<! under local coordinates can be obtained for training: 

𝐻AC,BD
) =]

E,F

𝐷C,E
G$ 𝑅AB 𝐻AC,BD𝐷F,D

G% 𝑅AB 0"

• where 𝐷 G  is the Wigner matrix, and 𝑙C is angular momentum quantum number of the orbital 𝛼
• The predicted O𝐻);<! is transformed back to global coordinates to preserve equivariance:

𝐻AC,BD =]
E,F

𝐷C,E
G$ 𝑅AB 0" 𝐻AC,BD

) 𝐷F,D
G% 𝑅AB



Message Passing 
(MP)

Local Coordinates MP
(LCMP)

Deep Learning Approaches: DeepH
Deep Learning DFT Hamiltonian (DeepH):

Crystal graph: consists of vertices 𝑣( and edges 𝑒(/ within cutoff radius 𝑅=
An edge is added between two atoms if the orbitals are overlapped
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Message Passing 
(MP)

Local Coordinates MP
(LCMP)

Deep Learning Approaches: DeepH
Deep Learning DFT Hamiltonian (DeepH):

MP Layer: node and edge representations are updated according to the local topology
Takes relative distance as edge feature, naturally invariant
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Message Passing 
(MP)

Local Coordinates MP
(LCMP)

Deep Learning Approaches: DeepH
Deep Learning DFT Hamiltonian (DeepH):
LCMP Layer: relative orientation information x𝐫(H

IJ of bond 𝑖𝑘  under local coordinate defined for 
edge 𝑝𝑞 is added into the initial edge features, and predict Hamiltonian element O𝐻(C,/D

70

[𝐫&6
78 = 𝑅78 ^ 𝒓&6



Deep Learning Approaches: DeepH
Deep Learning DFT Hamiltonian (DeepH):
Network architecture:

71



Deep Learning Approaches: DeepH
Deep Learning DFT Hamiltonian (DeepH):
Performance: trained and tested on graphene 6x6 supercell MD data (containing a variety of 
configurations)

meV level error of K𝐻&9,2;  Narrow distribution of K𝐻&%,2% between 
identical orbital pairs 72



Deep Learning Approaches: DeepH
Deep Learning DFT Hamiltonian (DeepH):
Performance: generalization for 2,000 unseen graphene configurations

Density of State (DOS): distribution of electrons of different energy states
Shift current conductivity 𝜎&&&: conductivity of electrons excited by photons of different energy ω 73



Deep Learning Approaches: DeepH
Deep Learning DFT Hamiltonian (DeepH):
Generalization Performance: trained on flat sheet graphene, tested on curved carbon nanotubes

Band structures by DFT and DeepH
74



1.08 ° magic angle graphene: 11,164 carbon atoms per unit cell

Deep Learning Approaches: DeepH
Deep Learning DFT Hamiltonian (DeepH):
Generalization Performance: moiré-twisted bilayer materials
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Deep Learning Approaches: DeepH
Deep Learning DFT Hamiltonian (DeepH):
Generalization Performance: moiré-twisted bilayer materials

trained on non-twisted small bilayer structures
tested on twisted large structures

Linear complexity for large systems
76



Deep Learning Approaches: DeepH
Deep Learning DFT Hamiltonian (DeepH):
Generalization Performance: trained on non-twisted small bilayer structures, tested on twisted large 
structures

77



AI in Materials Science
Directly Bridging

78



Deep Learning Approaches: CGCNN
Crystal Graph Convolutional Neural Networks (CGCNN) [1]:
Directly bridging the gap between crystal structures and material properties via GNN
Construction of crystal graph:
• Node 𝑣( representing physical properties of atom 𝑖
• Edge 𝑒 (,/ '  representing the distance between atom 𝑖 and its k-th nearest neighbor 𝑗

𝑣&  

𝑣2  

𝑒 &,2 " 
Crystal Structure Crystal Graph

Preserving invariant chemical environment of atoms

79
[1] Xie, Tian, and Jeffrey C. Grossman. "Crystal graph convolutional neural networks for an accurate 
and interpretable prediction of material properties." Physical review letters 120.14 (2018): 145301.



Deep Learning Approaches: CGCNN
Crystal Graph Convolutional Neural Networks (CGCNN):
The node feature is updated following:

𝑣(
KL" = 𝑣(

K +]
/,H

𝜎 𝑧 (,/ '
K 𝑊9

K + 𝑏9
K ⊙𝑔 𝑧 (,/ '

K 𝑊M
K + 𝑏M

K 	

Where
𝑧 (,/ '
K = 𝑣(

(K)⊕𝑣/
K ⊕𝑒 (,/ '

And node features are pooled for global properties prediction

⊙: element-wise production, ⊕: concatenation 80



Deep Learning Approaches: CGCNN
Crystal Graph Convolutional Neural Networks (CGCNN):

81



AI in Materials Science
Inverse Problem

82



Next Level: Inverse Problem

Structure Properties

Structure-Property
Relationship

Can we start with the desired properties?
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Next Level: Inverse Problem
Denoising Diffusion Probabilistic Models (DDPM) (Lecture 3):
• Mapping unknown data distribution to a known prior distribution (e.g. standard Gaussian)
• Making effective sampling from the original data distribution feasible

Gaussian distribution data distribution

84



Inverse Problem: CDVAE
Crystal Diffusion Variational AutoEncoder (CDVAE) [1]:

85
[1] Xie, Tian, et al. "Crystal diffusion variational autoencoder for periodic material 
generation." arXiv preprint arXiv:2110.06197 (2021).



Inverse Problem: CDVAE
Crystal Diffusion Variational AutoEncoder (CDVAE):
Training: 
• Encode crystal structure 𝑀 into latent representation 𝔃 with a periodic graph neural network PGNNNOP
• Decode crystal aggregation properties (𝑐, 𝐿, 𝑁) through MLP?QQ
• Denoise corrupted structure �𝑀 = �𝐴, �𝑋, 𝐿 conditioned on 𝔃 through PGNN;NP

~𝒩 0,1
86



Inverse Problem: CDVAE
Crystal Diffusion Variational AutoEncoder (CDVAE):
Generation: 
• Sample a latent representation 𝔃~𝒩 0,1
• Decode crystal aggregation properties (𝑐, 𝐿, 𝑁) through MLP?QQ
• Randomly initialize a disordered crystal structure �𝑀 according to (𝑐, 𝐿, 𝑁)
• Denoise corrupted structure �𝑀 = �𝐴, �𝑋, 𝐿 conditioned on 𝔃 through PGNN;NP
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Inverse Problem: CDVAE
Crystal Diffusion Variational AutoEncoder (CDVAE):
Property optimization: 
• Jointly trained property predictor: �𝑃 = FRST 𝓏
• Optimize latent using back propagation (BP) for 5,000 steps
• Decode 10 crystal structures every 500 steps from the latent trajectory
• Select one best structure with closest �𝑃 predicted by an individual predictor

FRST 𝓏b𝑃

𝑃/<=>#/

Δ𝑃
BP

88



Inverse Problem: MatterGen
MatterGen [1]:
Tailored diffusion process for crystalline materials:

𝑞 𝑨KL", 𝑿KL", 𝑳KL" 𝑨K, 𝑿K, 𝑳K) = 𝑞 𝑨KL"| 𝑨K 𝑞 𝑿KL"| 𝑿K 𝑞 𝑳KL"| 𝑳K

• Atom types: 𝑨 = 𝒂", 𝒂#, … , 𝒂- ∈ 𝔸-
• Atom fractional coordinates: 𝑿 = 𝒙", 𝒙#, … , 𝒙- ∈ 0,1 -×$

• Lattice: 𝑳 = 𝒍", 𝒍#, 𝒍$ ∈ ℝ$×$

89
[1] Zeni, Claudio, et al. "Mattergen: a generative model for inorganic materials 
design." arXiv preprint arXiv:2312.03687 (2023).



Inverse Problem: MatterGen
MatterGen:
Tailored diffusion process for crystalline materials:
• Atom type 𝑨: 

𝑞 𝒂K 𝒂K0") = Cat 𝒂K; 𝒑 = 𝒂K0"𝑸K
• Cat 𝒂; 𝒑 : categorical distribution over 1-hot vectors whose probabilities are given by the row vector 𝒑
• 𝑸K (/ = 𝑞 𝑎K = 𝑗 𝑎K0" = 𝑖): Markov transition matrix at time step 𝑡 

𝑸K (/ =

1 𝑖 = 𝑗 = 𝑚
1 − 𝛽K 𝑖 = 𝑗 ≠ 𝑚
𝛽K 𝑗 = 𝑚 ≠ 𝑖
0 𝑚 ≠ 𝑖 ≠ 𝑗 ≠ 𝑚

• 𝛽K: probability of transiting to a MASK state
• 1 − 𝛽K: probability of staying unchanged
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Inverse Problem: MatterGen
MatterGen:
Tailored diffusion process for crystalline materials:
• Fractional coordinates 𝑿: 

𝑞 𝒙K 𝒙*) = 𝒩U 𝒙K; 𝒙*, 𝜎K#𝑰
• 𝒩U: wrapped normal distribution preserving periodic boundary condition (PBC)

𝒩U 𝒙K; 𝒙*, 𝜎K#𝑰 = ]
H∈ℤ(

𝒩 𝒙K; 𝒙* − 𝒌, 𝜎K#𝑰
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Inverse Problem: MatterGen
MatterGen:
Tailored diffusion process for crystalline materials:
• Lattice 𝑳: 
• Naïve diffusion process:

𝑞 𝑳K|𝑳* = 𝒩( ¤𝛼K𝑳*, 1 − ¤𝛼K 𝑰)
• Leads to extremely narrow and small lattices
• Custom limiting mean & variance:

𝑞 𝑳K|𝑳* = 𝒩( ¤𝛼K𝑳* + 1 − ¤𝛼K 𝜇 𝑛 𝑰, 1 − ¤𝛼K 𝜎K# 𝑛 𝑰)
• which yields the limit distribution for 𝑇 → ∞:

𝑞 𝑳X = 𝒩(𝜇 𝑛 𝑰, 𝜎X# 𝑛 𝑰)
• where 𝜇 𝑛 = ( 𝑛𝑐, 𝜎X# 𝑛 = ( 𝑛𝑣 
• 𝑐: inverse average atomic density of the dataset
• 𝑣: average unit cell volume of the dataset
• The signal-to-noise-ratio at 𝑇 is therefore independent to the number of atoms 𝑛:

𝑆𝑁𝑅 = lim
X→Z

𝜇 𝑛
𝜎 𝑛

=
( 𝑐
𝑣
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Inverse Problem: MatterGen
MatterGen:
Tailored diffusion process for crystalline materials:

93



Inverse Problem: MatterGen
MatterGen:
Conditional generation of materials:

Unconditional pre-training 
of the base model

Fine-tuning with labeled 
data for condition 𝑐

“ControlNet, Zhang, et al. 2023”

Fine-tuned for different tasks with a 
frozen base model
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AI in Materials Science
AI as a Powerful Assistance
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AI as a Powerful Assistance:

Single crystal Si
Crystal structure

X-Ray Diffraction (XRD)

Scanning Tunneling Microscopy (STM)
Transmission Electron Microscopy (TEM)

Characterization

Analysis & Interpretation

96



AI as a Powerful Assistance: CrySTINe
Crystal Structure-Type Identification Network (CrySTINet) [1]:

Input the XRD pattern of an unknown compound

ResNet Confidence Networks
(RCNet)

Predict both categories 𝑂 
and reliabilities 𝑅

Choose the most probable 
structure type as the final result

97
[1] Chen, Litao, et al. "Crystal Structure Assignment for Unknown Compounds from X-ray Diffraction 
Patterns with Deep Learning." Journal of the American Chemical Society 146.12 (2024): 8098-8109.



AI as a Powerful Assistance: CrySTINe
Crystal Structure-Type Identification Network (CrySTINet):

Simulated XDR

Cosine similarity as an extra criterion

Confidence Category

Input XRD as a 1-D vector
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>3k diffraction patterns

AI as a Powerful Assistance: 4D-STEM

4-D Scanning Transmission Electron Microscopy (4D-STEM) :
• Each pixel in real-space corresponds to a 2-D diffraction pattern
• Each diffraction pattern contains local structure information 

within the 𝑛𝑚 range
• 4D-STEM data can easily reach GBs
• Statistical or computational approaches for interpretation are 

indispensable

99



AI as a Powerful Assistance: 4D-STEM
4D-STEM Data Analysis [1]:

Features of different scales are clustered sequentiallyHierarchical k-means clustering

Input Alignment Unsupervised Clustering

100[1] Kimoto, Koji, et al. "Unsupervised machine learning combined with 4D scanning transmission 
electron microscopy for bimodal nanostructural analysis." Scientific Reports 14.1 (2024): 2901.



AI as a Powerful Assistance: 4D-STEM
4D-STEM Analysis:

b

c d

Features of different scales are clustered sequentially
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AI as a Powerful Assistance: 4D-STEM
4D-STEM Analysis:
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AI as a Powerful Assistance: Material Discovery
GNoME [1]:

103
[1] Merchant, Amil, et al. "Scaling deep learning for materials discovery." Nature 624.7990 (2023): 80-85.



AI as a Powerful Assistance: Material Discovery
GNoME:

104



AI as a Powerful Assistance: Material Discovery
GNoME:

105
Discovered up to 380,000 computationally stable structures never found before



AI as a Powerful Assistance: Material Discovery
Autonomous materials discovery [1]:

106
[1] Szymanski, Nathan J., et al. "An autonomous laboratory for the accelerated synthesis of novel materials." Nature 624.7990 (2023): 86-91.



AI as a Powerful Assistance: Material Discovery
Autonomous materials discovery:
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AI as a Powerful Assistance: Material Discovery
Autonomous materials discovery:
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AI as a Powerful Assistance: Material Discovery
Autonomous materials discovery:
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AI as a Powerful Assistance :
Autonomous materials discovery:

17 days:
• 41 new materials
• 9 w/ active learning
• 17 failed

110



AI in Materials Science
Outside and Beyond Crystals
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Outside of the Crystals: Amorphous Materials
AI in Polymer Science:

112

[1]

[1] Bradford, Gabriel, et al. "Chemistry-informed machine learning for polymer electrolyte discovery." ACS Central Science 9.2 (2023): 206-216.

• Input polymer electrolyte structure and 
formula

• Predicating ionic conductivities 𝜎 by 
predicting pre-exponential factor 𝐴 and 
activation energy 𝐸< in the Arrhenius 
equation:

ln 𝜎 = ln 𝐴 −
𝐸<
𝑅𝑇



Beyond Crystals: MetaMaterials

113[1] Ha, Chan Soo, et al. "Rapid inverse design of metamaterials based on prescribed mechanical behavior through machine learning." Nature 
Communications 14.1 (2023): 5765.

Metamaterials based on prescribed mechanical behavior [1]

• Mechanical properties 
determined by mm scale topology 
(10 mm unit cell)

• Inverse design of topology 
structure with the target 
compressive behavior in the form 
of curve features



Beyond Crystals: MetaMaterials

114[1] Alderete, Nicolas A., Nibir Pathak, and Horacio D. Espinosa. "Machine learning assisted design of shape-programmable 3D kirigami metamaterials." npj 
Computational Materials 8.1 (2022): 191.

Shape-programmable 3D kirigami metamaterials [1]
• Inverse design of cut layout with the desired 

deformation



Useful Resources:
• A Tutorial on Density Functional Theory: 

https://www.researchgate.net/publication/226474665_A_Tutorial_on_Density_Functional_Theo
ry

• Material Project: https://next-gen.materialsproject.org/
• MP Seminar – Inverse Design: Why Aren't We There Yet?: 

https://youtu.be/0lO7QNAexRc?si=EaNuCcuwwDlDfBxM
• MP Seminar – MatterGen: https://youtu.be/Smz1go6_Spo?si=xnU8kXWNFVIYf-Zf
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https://www.researchgate.net/publication/226474665_A_Tutorial_on_Density_Functional_Theory
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Additional materials



Physical properties derived from the DFT 
Hamiltonian
• Band structure and DOS:
• The eigenvalues εh𝒌	and eigenstates 𝑣h𝒌 of the Hamiltonian 2𝐻	at band 𝑛 and 

wavevector 𝒌 can be obtained by solving the generalized eigenvalue problem:
𝐻 𝒌 𝑣h𝒌 = εh𝒌𝑆 𝒌 𝑣h𝒌

• where the overlap matrix 𝑆 is obtained by the inner product of the basis at 
very low computational cost
• εh𝒌 of at band 𝑛 and wavevector 𝒌 construct the band structure
• DOS is obtained by integrating the number of electronic in momentum space 

in the band structure over each value of energy:

𝐷 𝐸 = 9𝛿 𝐸 − 𝐸 𝒌 𝑑'𝒌
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Physical properties derived from the DFT 
Hamiltonian
• Shift current conductivity 𝜎!"#:

𝜎!"# 𝜔 =
𝜋𝑒$

ℏ%
'

𝑑$𝒌
2𝜋 $×,

&,(

𝑓&(Im 𝑟(&" 𝑟&(
#,! + 𝑟(&# 𝑟&(

",! 𝛿 𝜔(& 𝒌 − 𝜔

• 𝜔(& 𝒌 = )B𝒌*)D𝒌
ℏ

: difference of energy eigenvalues

•  𝑓&( = 𝑓& 𝒌 − 𝑓( 𝒌 : Fermi–Dirac occupations of bands 𝑛 and 𝑚 at 
wavevector 𝒌

• 𝑟(&!  and 𝑟&(
",! = ,-BDE

,.F
− 𝑖 𝑟&&! − 𝑟((! 𝑟&("  are Berry connection and its 

general derivative, calculated with the DFT Hamiltonian using the method 
developed in ref [1]

118[1] Wang, Chong, et al. "First-principles calculation of optical responses based on nonorthogonal localized 
orbitals." New Journal of Physics 21.9 (2019): 093001.


