Al + Materials Science

March 27
Tailin Wu, Westlake University
Website: ai4s.lab.westlake.edu.cn/course

Image from: DeepMind


https://tailin.org/
https://ai4s.lab.westlake.edu.cn/course/

Outlines

* Intro to Materials Science
* Crystalline Materials
e Structure-Property Relationship
e DFT Calculation

* Al in Materials Science
* Artificial intelligence ab initio (Al?) methods
Directly Bridging
Inverse Problem
Al as a Powerful Assistance
Outside and Beyond Crystals



What are Materials?

* Fundamental building blocks of modern life
* Every piece of solid thing you can touch around you

* The history of human civilization is also the history of how humans
exploit different kinds of materials

Stone Age Bronze Age Iron Age
3.4 to 1 million years ago 3300 BC to 1200 BC 1200 BC to c. 550 BC
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Why do we Care about Materials?

* Necessity:
* Everything is made out of something
* Materials selection is critical to design and performance

 Ambition:
* New materials = new opportunities
* Ex: transistor to integrated circuit

* Fear:
* Most failures are materials failures Vacuum Tube MOSFET
e Ex: aircraft accident due to material fracture



Classification of Materials: Two Categories

Fundamental difference: Long-range Order of Atoms

* Crystalline Materials:

e Atoms are arranged in a periodic pattern
repeated throughout the material

* Ex: diamond, most of semiconductors and
metals

 Amorphous Materials:

* No systematic and regular pattern of
atom arrangements

* Ex: glass, plastic, rubber

Generally speaking:

Most of crucial functional applications rely on crystalline materials
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Intro to Materials Science

Crystalline Materials



Crystalline Materials:

Si [110]

Atomic Resolution TEM HAADF Image
of Crystalline Material [1]

* Periodic repeating pattern of atoms can be
clearly observed
e But how to properly describe such structures?

[1] Mazet, L., et al. (2015). A review of molecular beam epitaxy of ferroelectric BaTiOs films on Si, Ge and
GaAs substrates and their applications. Science and Technology of Advanced Materials, 16(3).



Crystalline Materials:

* Fundamental Truth:
* The crystal consists of identical atom groups
as minimal repeating units
* The crystal is constructed by duplicating its
repeating unit following a certain pattern

Atom Groups

SrTiO,
SiO,
Si [110]

Atomic Resolution TEM HAADF Image
of Crystalline Material



Minimal repeating unit:

Unit Cell

The position of each atom is described by a fractional
coordinate in the cell:

 Ex: Tiatom at the body center

Atom Groups

SrTiO3 . 11 11%
SiO, n=1333
_  Ex: O atom at the top center
Si [110] . 11 T
6- [t 2]
2 2

Atomic Resolution TEM HAADF Image
of Crystalline Material
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Crystalline Materials:

Si [110]

Atomic Resolution TEM HAADF Image
of Crystalline Material

* Minimal repeating unit:
* Unit Cell

Each Unit Cell can be
abstracted as a blue dot
in the Lattice Grid

* Repeating pattern:
e Lattice Grid

11



Crystalline Materials:

Atomic Resolution TEM HAADF Image
of Crystalline Material

Lattice Grid:

e Similar to the Cartesian coordinate
system, defined by a set of basis
Lattice Vectors:

11,1, 13

 The angles between lattice vectors
is defined as lattice angles:
ap,y
* Together, they are defined as
Lattice Constant

12



Crystalline Materials:

* Inour example: Cubic BaTiO,
1@l| = |[B]| = |I€l| = 4.01 A
a=p=y=90°

¢« Ps.1A=0.1nm

 Mathematically, structure of a crystalline material M can be represented as:
M=(A4X1L)
« A € Z": vector of atomic numbers of n atoms in the
e X = [xq,X5,...,x,] € R3™ : tensor of fractional atom coordinates

T r ? e L=1[l,1,,15] € R33 : tensor of
* Giventhe , repeat along the , you are now able to
|

A é ® reconstruct the ENTIRE crystal!

13 lZ
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Crystalline Materials: M = (4, X, L)

« A € Z": vector of atomic numbers of n atoms in the
o X = [xq,%5, ..., x,] € R3™: tensor of fractional atom coordinates
« L=1[l,1,,15] € R33 : tensor of
e Crystal structure M has properties as follow:
* Real space coordinates C of atoms can be obtained as:

ct=x"T.1L
* Periodicity:
\ @ ) ? x;=x;+t-L
t € 73
e coordinates of atoms with same index i in the periodic expanded space can
A I\ s be obtained by adding a combination of integer multiple lattice vectors
13 12
a
14
0 f > ®



Crystal Structures:

e 7 crystal systems and 14 Bravais lattices

e spatial arrangement of atoms determines
the material properties

Bravais
lattice

Parameters

Simple (P)

Volume
centered (I)

Base
centered (C)

Face
centered (F)

Triclinic

a) # az # az

12 75 X23 % 3]

a) # az # az

a3 = agy = 90°

Monoclinic oz # 90°
a) # az # az
Orthorhombic |  a;; = ag3 = ag, = 90°
ay, =da, # az
Tetragonal 02 = (o3 = gy = 90°

Trigonal

)y = dg = a3
(12 = (xp3 = (x3] < ]200

Cubic

iy = g = gz
Oy = Q3 = gy = 90°

R

Hexagonal

a), = daz # az
OIZ = 1200

Qg3 = gy = 90°




Intro to Materials Science

Structure-Property Relationship



The Essence of Materials Science

* The fundamental research subject can be summarized as:
Structure-Property Relationship

* Structure:
* Composition: kind and fraction of atoms present
* Microstructure: how those atoms are arranged in the materials

* Property:
* |sotropic: orientation-irrelevant, e.g. density, heat capacity, melting point
* Anisotropic: e.g. polarity, magnetization, piezoelectricity



Structure-Property Relationship

* Ex: Piezoelectric ceramics BaTiO;

e Structure:

* Composition: Ba:Ti:O =1:1:3 ./'
* Microstructure: described as Fig.a i
al- -9 J,;
* Property: @1 e |
* Isotropic: “vo S0
 density = 6.02 g/cm3, f w)
* melting point = 1,625 °C
* Anisotropic: (a) (b)

» piezoelectricity along the polarization (z-axis in Fig.b)

18



Structure-Property Relationship

Phase-transfer
Temperature

Stiffness

Mechanical
Strength

Shape-memory Alloy

Band-gap

8'd Determines Semiconductor Carrier Mobility
= Thermostability

O
H K Glass-transition
’ QN Bullet-proof Fiber Temperature

E Degradation Rate

19



Experimental Approaches

Experiments

7% 4
- | * |
S Voteria ——

(Shape-memory heart stent)

Structure _ Properties

Structure-Property
Relationship

20



Experimental Approaches

Experiments

Miateria —

(Shape-memory heart stent)

Structure _ Properties

Structure-Property
Relationship
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Experimental Approaches ih.

Experiments

I Properties

Structure-Property
Relationship

Preparation

Wil —

Composition

Material
(Shape-memory heart stent)

Characterization

Structure 22



Experimental Approaches

* Limitations:
* Desired structure can not be prepared with precise, atomic-
level control

* Property of many structures worth studying is unable to be
determined experimentally

Preparation

* High experimental costs and low efficiency

) S N

Structure

23



Energy

Theoretical Approaches v ®

Conduction Band
(e- are free to move)

Valence Band
(e~ are immobilized)

X
Band Structure of

Intrinsic Semiconductor (Si)

The valence band of Si is fully filled and the conduction band is empty,

preventing the electrons from traveling through the material

The electrons need to be excited across the band gap by thermal or

external energy

Therefore, the conductivity of Si at temperature T can be approximated:
(E¢)

kT
Here Ny is number of electrons per unit volume, g is the carrier

mobility of electron

o =~ Ngpeu, exp

24



Energy

Theoretical Approaches \,/:g

* Limitations:
* Lots of assumptions and approximations have to be applied to
the theory

* Ignored some of the complex micro-scale interactions

Conduction Band
(e- are free to move)

* Limited application scenarios

Valence Band
(e~ are immobilized)

X
Band Structure of

Intrinsic Semiconductor (Si) 25



Intro to Materials Science

DFT Calculation



Computational Approaches

e Can we try to compute the material properties purely from its structures?
* Ab initio Calculations: from electrons to properties

Wave Function of electron:
Y(r,t)

Probability Density:
Y (r, O)¥(r,t) = [P(r,t)|

Schrodinger Equation:

_ 0
H‘P(r, t) — lhaqj(r, t)

where the Hamiltonian operator is:
~ h? ~
H=—-—V?+7V
2m

Time-Independent Schrodinger Equation:
Hy(@r) = Ey(r)
E1, ¥4



Ab initio Calculations: Schrodinger equation

Works fine for single electron system: H atom, hydrogenic ions (He*, Li**)

Directly solving the many-electron Schrédinger equation is currently computationally impossible,
with complexity exponential to N, the number of electrons in the system

Schrodinger Equation:

_ 0 )
H l.IJ(r’ t) = ih a ‘P(r, t) /, P

Many-Body Calculation:

HYR) = [T+ V + UJ|Yp(R) = EY(R)

j #2 N N 7 _
Z <_ 2m; V%) z Vir) + z U(ri,mj)|¥ = EY Si

112 e~ per unit cell




ADb initio Calculations: Hartree-Fock Method

Hartree-Fock Method (HF): Self-Consistent Field (SCF)
* Assuming each electron is in an average potential field generated by all the other electrons:

U(ri,rj) = V(T'i) = V(R];tl) '
* then: _— 1 n+=1
. (n—1
H" lpi(n)(ri) = Eilpi(n)(ri)
converge
P

* Hohenberg-Kohn (HK) Theorems:
* Electron Density:

0o (1) = N j dr, .. j ATy 5 (R (R)

* Total Energy:

Eo(po) = ¢3(Po)ﬁ¢0(Po)
* HK Theorems proof: https://people.chem.ucsb.edu/metiu/horia/OldFiles/115C/KH _Ch4.pdf

29
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ADb initio Calculations: DFT

e Density Functional Theory (DFT):
* Assumes that the property of the system is determined by electron density p

* Treats the energy as the functional of electron density (3 variables), instead of
trying to solve the entire wave function in the Schrodinger Equation (Nx3 variables)

e The target of DFT calculation is to solve the Kohn-Sham equation:

hV?
<— T + vks|p] (r)) @i(r) = g¢;(r)

* Where p is defined in terms of the Kohn-Sham wave functions ¢;:

p(r) = zlwi(r)lz

Walter Kohn Lu Jeu Sham

30



ADb initio Calculations: DFT

* Density Functional Theory (DFT):

Photo from the Nobel
Foundation archiv: Foundation archive

e. 3
Walter Kohn John A. Pople

* The Kohn-Sham potential vkg consists of 3 terms:
* External potential voy: generated by the nucleus
* The Hartree potential vy rtree: the Coulomb repulsion between electrons
* Exchange-correlation potential vy.: complex quantum mechanical interactions

Vks[Pl (1) = Vext (M) + Vhartree [P1() + vy [p] (1)

31



Density Functional Theory (DFT): Step 1

Similar to the H-F method, DFT applies self-consistency (SC) calculation:

1. Initialize electron density py(r) to start the iterative procedure

* In principle, any random positive function normalized to the total number of
electrons is acceptable

* Areasonable initiation can speed up convergence, e.g.:
po() = ) palr = Re)
a

* Where R, and p, represents the position and atomic density of the nucleus



Density Functional Theory (DFT): Step 2

2. Calculate Kohn-Sham potential kg = Vext + VHartree + Vkc:
* The external potential v,y is typically the sum of nuclear potentials:

Uext(r) — z va(r — Ra)

(04
* Where v, can be the Coulomb potential with the nuclear charge Z,,:
Zq

voc(r) — _T

* Or use other predefined pseudo-potentials for v, depending on systems and tasks



Density Functional Theory (DFT): Step 2

2. Calculate Kohn-Sham potential Vxg = Vext + VHartree + Vkc:
* The Hartree potential vy,tree Can be calculated by either direct integration:
!/
pr) s
[r — 7’|

VHartree (T) —

* Or solving Poisson’s equation:
Vszartree(r) = —4mp(r)



Density Functional Theory (DFT): Step 2

2. Calculate Kohn-Sham potential kg = Vext + VHartree + Vkc:

* The exchange-correlation potential vy consists of all the other non-classical
interactions between electrons, defined as functional derivative of exchange-

correlation energy:
O0E.

6p(r)
* The exchange-correlation energy E. can be calculated with different designs and
approximations, for example the simplest local-density approximation (LDA):

e = [ @7 e9(p()

» Where e"EG(p) is the exchange-correlation energy per unit volume of homogeneous
electron gas (HEG) of a given density p, which can be tabulated for different densities

vxclpl(r) =



Density Functional Theory (DFT): Step 3

3. Solving the Kohn-Sham equation:

hV?
(— o + vkslp] (r)> @;(r) = &g¢;(r)

HKS¢i(r) = &¢p;(r)

N 2
* Where Hgg = — Zlm + vks|[p](r) is the Kohn-Sham Hamiltonian operator

* Apply the Hamiltonian operator to the basis set {¢; (1)} to obtain Hamiltonian matrix Hks:

Hi; =f¢;(r)ﬁ¢j(r)dr



Density Functional Theory (DFT): Step 3

3. Solving the Kohn-Sham equation:

The Hamiltonian matrix Hkg is an NXN symmetrical matrix

N is the total number of basis functions, with the basic assumption in DFT that the Kohn-
Sham wave function is the linear combination of the basis set {¢;(1)}:

@i(r) = z cijp;(r)

J

Where c;; is the are the coefficients of the basis functions in the expansion of the ith
Kohn-Sham wave function ¢;

Thus, each element H;; in the Hgg describes the interaction between basis ¢; and ¢;



Density Functional Theory (DFT): Step 3

3. Solving the Kohn-Sham equation:

* Once the Kohn-Sham Hamiltonian matrix Hkg is constructed, the Kohn-Sham equations

turned into an eigenvalue problem:
HKSC — EC

 where C is the matrix of coefficients, and E is the diagonal matrix of eigenvalues (orbital
energies)
* Then, the Kohn-Sham wave functions can be constructed using € and basis set:
@;(r) = z c;jpj(r)

J



Density Functional Theory (DFT): Step 4&5

4. Calculate new electron density from obtained wave functions:

p1(1r) = lei(r)l2

5. Compare p;(r) and initial guess py(r):

* If the difference between two densities is lower than a user-defined criterion n:
lp1(r) = po ()] <7
* The calculation is considered as self-consistent

e With correctly calculated form of wave functions and Hamiltonian matrix, several
observables can be evaluated, including total energy, band structure, conductivity, etc.



Density Functional Theory (DFT): Iteration

6. If the convergence criterion has not been reached:

* A new iteration begins with p; (1) of several different options:
* A random guess again

Use the output of the previous cycle: always leads to instabilities
Mix the last output and the original input:

po(™) = Bpo(™) + (1 = B)p1(1r)

The mixing parameter (3 is typically chosen to be around 0.3
Other mixing strategies similar to the one above

* Repeat step 2 to 5 until converged, highly dependent on calculation conditions and
hyperparameters



Density Functional Theory (DFT): Iteration

Po(T)

<
\ 2

Uks(T)

A4

ﬁKS%(") = &¢;(r)

No

p@) = ) loy(@)I?

Yes

end




Density Functional Theory (DFT): Limitations

Non-Empirical  Empirical HEAVEN

Chemical accuracy

° ’ . ) 5t rung: exact exchange + exact
JaCOb S Ladder' RPA partial correlation
* The accuracy of DFT calculation e
. . rung: hybrid- an
mainly depends on the choice of PBEO B3LYP hybrid meta-GGA
exchange-correlation functional

accuracy, but also higher expenses 2% rung: Generalized Gradient

PBE, PWO1 BLYP Approximation (GGA)

15t rung: Local-Density
Approximation (LDA)

EARTH

Hartree-Fock Theory

42



Density Functional Theory (DFT): Limitations

40 - 1
* DFT calculation is still computationally N
expensive N
: 5 [
* Especially for large-scale structures v 251 /
consists 103 atoms 5 20- )
S s
10 A , ‘
z’,./,/
5 -

100 200
Number of atoms

Complexity: O(N3)

43
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Al in Materials Science

Artificial intelligence ab initio (Al?) methods



Deep Learning Approaches: Data Driven

~ ini
= Training S @ Inference S N
— L

Database Models Properties

MATERIALS
PROJECT @

MATERIALSCLOUD

The Ope Qua tum ( CS D

Materials Database

46



Deep Learning Approaches: DPMD

Deep Potential Molecular Dynamics (DPMD):

hhfa> § A 7 2% 9 * In each frame of the ab initio molecular dynamics
e PN T A2 hy W . . .
E L Ve e T T - AIMD) simulation, the potential surface
B ? v “‘ ‘yf& y > L i (.‘
v 4 K ST ;,_13 il ; E(R{,R,, ..., Ry) of the structure is determined
¥ :: »," ; ,_1;4"' ‘},:v\f‘: ¥ R through Quantum Mechanics (QM) calculation, where
»:‘; i (0 a i N R, the R; is the coordinates of the atom i
X s s o &
* & ’;‘-‘ o {*,v*.ﬁ. 1w v  The forces on each atom can be calculated as the
. - -3 - - ks r 0 . . . .
¥ Aoy REX K ‘.,.'4_1,&. ¢ T negative derivative of potential to the coordinates:
v e 1 e \ . - ]
a e ~£J~ | "::"':-ﬁ"‘v; v \’.' Y ?’ }-,' \ F VE (aE aE aE)
AN : 4 iy Wi S - =
I N 0x;’ dy;' 0z,
€ RV & R an.
2 i © TAGE ) B
4 4 by R
P
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Deep Learning Approaches: DPMD

Deep Potential Molecular Dynamics (DPMD):

A%y | A »
& e L
1 h; . ‘:ff‘, > "3’"'1(‘*“. A
' Ny vt N g1
¥ PN B T
& L S+ 5 x A
IR @ X8 i (9 -t KA Y,
L e . Wy » v 1
» ~)' . ‘J"v‘ I / o o
¢ & D A o S ¢ ) >
e T {‘ LF R *'p 4
PREATIRC Ay Yo
.,_\ ' > ‘Q_ L. N * rs)
¢ ,‘ -"r‘f v “ ”~?, ’
> = L ) “, : .‘-“’ ‘N \. | ? }.',
oy e B g 8
4 She s Vigor ¥ Wy
i3 NGl .
PY o e PN
p by R
P

MD computes the half-step velocities of the atoms

according to the forces and simulation time step At:

At

v, (t +A7t) = v,(0) + -, (®)

Fi(t) . .
Where a;(t) = % is the acceleration

l

At last, MD computes the atom coordinates and full-step
velocities, generating a new frame:

At
R;(t + At) = R;(t) + Atv; (t + ?)

At At
v;(t + At) = v; (t + 7) + 7ai(t + At)

Since each iteration involves QM calculation, AIMD can be
extremely time and energy consuming

48



Deep Learning Approaches: DPMD

Deep Potential Molecular Dynamics (DPMD) [1]:

* Inthe DPMD framework, a set of local orthogonal unit
bases {ex, ey, ez} centered in the target atom i is
constructed:

* e,: parallel to the O-H bond
C; * e,: perpendicular to H-O-H water molecule plane
W * eyiezXey
* The relative coordinate of a neighboring atom j can be
determined:

D;; = {1/Ry) R;; = x;jey + y;;e, + z;e,
* The input coordinates of the Neural Network (NN) can be:
, , , * With both radial and angular information:
i = {1/ Rij, =i/ Ri}, i/ Rij, 75/ Rij} D = {1/le'le/Rlzj'le/Rlzj'le/Rle'}
e Or with radial information only:
D;; = {1/R;;}

[1] Zhang, Linfeng, et al. "Deep potential molecular dynamics: a scalable model with the

accuracy of guantum mechanics." Physical review letters 120.14 (2018): 143001. 49



Deep Learning Approaches: DPMD

Deep Potential Molecular Dynamics (DPMD):

Iy {R ;) D} Hidden layers E,
R, R} {D,} Hidden layers E, h ‘
R; {R;}  {D;}  Hidden layers £

R;; D;,

R;, D;, E;

i

D;; of empty neighbors are set to 0

In the DPMD workflow, the relative coordinates

JELL]

coordinates R, then converted into {Dij}i=1 )

The NN outputs the energy of each atom E; and
sum them together to obtain the total energy E
The loss function is defined as a multi-task loss:

Pr D¢ 2
L = p.Ae? + N E |AF;|? + ?HAEH
l

Consists of 3 terms:
* Energy peratome
* Force on each atom F;,
* Virial tensor ¢ (measures internal stress)

Where factors p are loss weight
50



Deep Learning Approaches: DPMD

Deep Potential Molecular Dynamics (DPMD): g T e

" . © g ~

* Relaxation: structures are updated iteratively through bt
AIMD, evolving from an unstable structure to a I
balanced state Bt

e Comparing the interatomic distance distribution after s f\a

relaxation via both AIMD and DPMD, the obtained = T _
balanced structures fit quite well £ L | s
 Recall that the NN does not directly predict the | ’ {i Aj; salicylic acid

interatomic distance, exhibiting the convincing
accuracy of the deep potential force field




Deep Learning Approaches: DPMD

Deep Potential Molecular Dynamics (DPMD):

10
_10°
N
. . . . Q 102
* Since the time complexity of DPMD is O(N), 2
it tremendously lowers the computation s 10
costs, especially for larger systems o 10°
E
® pl
é 10
D 102 DeePMD —&—
o gt TIP3P —a—
103 7 , DFT: PBEO+TS —=—
i DFT: PBE+TS —=—
10' e o aaaal e g aaaul rea g aaaul e g aaaaal i aaaa
10 10° 10° 10* 10° 10°

Number of molecules
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Deep Learning Approaches: DeepH

Deep Learning DFT Hamiltonian (DeepH) [1]:

SCF calculation

Tips about DFT Hamiltonian Hpgr: {1/11'}-— ng
* Recall that Hppr describes the interactions between - A J
basis functions {¢;} Hoer

* Hppr is determined by the structure {R}
 Many observables are deterministically computed

from Hppr
* Hppr has to be obtained through computational Neural networks
expensive SCF calculation

[1] Li, He, et al. "Deep-learning density functional theory Hamiltonian for efficient ab initio
electronic-structure calculation." Nature Computational Science 2.6 (2022): 367-377.

Hprr({R}) mh

~ Physical
. response
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Deep Learning Approaches: DeepH

Deep Learning DFT Hamiltonian (DeepH):

SCF calculation

- {1/% no
‘ l .......... B and ..........

Hprr . structure

Modeling Structure-Hpgr Relationship . g
Hprr({R}) W serry

|
Modeling Structure-Property Relationship

Neural networks ~ Physical

. response
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Deep Learning Approaches: DeepH

Deep Learning DFT Hamiltonian (DeepH):

SCF calculation

Fundamental Facts:

* DFT does support high-accuracy calculation with
acceptable expenses for small systems

 DFT is NOT suitable for calculating large systems

Hprr({R}) . serry

Key Problem: 2377 S

 How to learn from small system DFT data and Neural networks ‘ - Physical

. . response
expand/generalize to large systems? -

55



Deep Learning Approaches: DeepH

Deep Learning DFT Hamiltonian (DeepH):

Challenges:

1. Infinite dimension of Hppr in the extended systems
2. SO(3) Rotation Equivariance of Hppr




Deep Learning Approaches: DeepH

Deep Learning DFT Hamiltonian (DeepH):

Important Prior Physics Knowledge: Nearsightedness Principle [1]
* Inthe many-body system, local electron properties at 1y does not response to the distant,
local perturbing potential w(r') outside a sphere of radius R

Unperturbed external potential

w(r)

Footprint of w

[1] Prodan, Emil, and Walter Kohn. "Nearsightedness of electronic matter." Proceedings of
the National Academy of Sciences 102.33 (2005): 11635-11638.
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Deep Learning Approaches: DeepH

- @

Deep Learning DFT Hamiltonian (DeepH):

Localized Basis:

e Atomic orbitals

* Interact only when overlapped

* Well-defined rotation transformations

58



Deep Learning Approaches: DeepH

Deep Learning DFT Hamiltonian (DeepH):

Localized Basis: Sparseness
* Only H;; between neighboring atoms (within R,

determined by the spread of orbitals, few A) are nonzero ©
Nearsightedness Principle:

* Only information of neighborhood (within Ry) should be

considered
F .:. * .l :l
U
- .
: l: I
] -I .|l.
[ - -.I.

Localized

”»

basis

O

!
::I
!
I

O 00O 0.0,
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Deep Learning Approaches: DeepH

Deep Learning DFT Hamiltonian (DeepH):

Localized Basis:

* Modeling Hamiltonian blocks from local interactions

 Does NOT respond to long-range configurations

I '_-I".
F L‘ T :._ n
: i Tha
P- g ..
l..l.
..I.ILI
1
s =1
= |

Localized

”»

basis

] 1
. i
“m n” 5
.I
-
1l

Q.

00000

O 00O Q0.

O

-
-
-
-
-
-’
s
v
’
7’

O
~
~
~
~
~
N
N
AN
N

~ao _ -

OO0 00O T OO0 O
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Deep Learning Approaches: DeepH

Deep Learning DFT Hamiltonian (DeepH):

SE(3) Equivariance vs. Invariance:

» SE(3) (Special Euclidean group in 3D)
includes 3 translation transformation
and 3 rotation transformation

* SE(3) Invariance:
* The output does NOT change with
the transformation of the input
structure

SE(3)
Transformation

~
e 4

Prof. Wu
Black hair
Smiling

Invariant

Prof. Wu
Black hair
Smiling
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Deep Learning Approaches: DeepH

Deep Learning DFT Hamiltonian (DeepH):

SE(3) Equivariance vs. Invariance:

» SE(3) (Special Euclidean group in 3D)
includes 3 translation transformation
and 3 rotation transformation

e SE(3) Equivariance:
* The output changes together with
the transformation of the input
structure

=

‘ e Thumb up
’ * Bangs to the right

‘,

[
| S 4

SE(3)

Transformation Equivariant

AR
™~

e Thumb down
* Bangs to the left
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Deep Learning Approaches: DeepH

Deep Learning DFT Hamiltonian (DeepH):

SE(3) Equivariance vs. Invariance:
* Invariant quantity: total energy, band gap, ...
« Equivariant quantity: Hppr, force field, ...




Deep Learning Approaches: DeepH

Deep Learning DFT Hamiltonian (DeepH):

Global coordinates: rotation transformation

| 1 Yy M~
' ” Fix basis and rotate structure l
-—@
el <

HA;),.B]); - t'Z
ur— [N

- »

- P . or vice versa
Do
HAp, T ™ t P:

The overlaps between orbitals are misoriented

64



Deep Learning Approaches: DeepH

Deep Learning DFT Hamiltonian (DeepH):

Local coordinates: rotation transformation

rotate basis and structure
7 - z’ simultaneously

-« »

The overlaps between orbitals remain unchanged
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Deep Learning Approaches: DeepH

Deep Learning DFT Hamiltonian (DeepH):

€1 = I'BA

Solution to Hppr equivariance requirement: &5 = roa
* Similar to DPMD ‘
/
T

Local coordinates {x', ¥, 2"} for bond AB:

. €1 ., e1Xe
x R

Al _ aloanl
- 31’y - |61X62|'Z -
€1 =TIpa

* e,:second nearest rgy non-parallel to e;
* Ensure the ﬁDFT element invariant to rotation:

t]_ - tz
* Dy, D, p orbitals of different angular
momentum quantum numbers
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Deep Learning Approaches: DeepH

Deep Learning DFT Hamiltonian (DeepH):

Solution to Hppr equivariance requirement:
* The rotation transformation from DFT global coordinates to local coordinates of bond AB:

RAB — (f’,j},,ZA’)

with X', 9, Z' being column vectors
And H'ppr under local coordinates can be obtained for training:

’ lg l —
HAa,BB = z Da,a (RAB)HAa,B,BDb’Bﬁ((RAB) 1)
a,b

where DY is the Wigner matrix, and [, is angular momentum quantum number of the orbital «
The predicted H'ppr is transformed back to global coordinates to preserve equivariance:

la — / l
HAa,B,B — z Da,a ((RAB) 1)HAa,BﬁDb’B’3(RAB)
a,b



Deep Learning Approaches: DeepH

Deep Learning DFT Hamiltonian (DeepH):

Crystal graph: consists of vertices v; and edges e;; within cutoff radius R
An edge is added between two atoms if the orbitals are overlapped

,,,,,
~,

~, s
‘‘‘‘‘‘

Message Passing
(MP)

Local coordinate
defined on AB bond

AB
€A

Local coordinate
defined on AC bond

y '?—);,

zl

AC
€ac

H;/‘\a,C/}

Local Coordinates MP
(LCMP)
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Deep Learning Approaches: DeepH

Deep Learning DFT Hamiltonian (DeepH):

MP Layer: node and edge representations are updated according to the local topology
Takes relative distance as edge feature, naturally invariant

Local coordinate
defined on AB bond

- -~

AB
€A

,,,,,
~,

Local coordinate
defined on AC bond

y '?—);,

zl

~, s
‘‘‘‘‘‘

AC
€ac

H;/‘\a,C/}

Message Passing Local Coordinates MP
(MP) (LCMP)

69



Deep Learning Approaches: DeepH

Deep Learning DFT Hamiltonian (DeepH):
LCMP Layer: relative orientation information f‘ﬁcq of bond ik under local coordinate defined for

edge pq is added into the initial edge features, and predict Hamiltonian element I’-I\l-a,jﬁ
_ — =

Local coordinate
defined on AB bond \

AB

. e ; I
'AD AB
o €A ,Vi X
z |
AB
€ac
HAa,B/}

AB
€an

‘‘‘‘‘
~,

bq _
ik

=

Local coordinate
defined on AC bond

~, s
‘‘‘‘‘‘

AC
€ac

H:‘\(t,C/}
‘ : /
\ [ /
Message Passing Local Coordinates MP

(MP) (LCMP)

qu Tk



Deep Learning Approaches: DeepH

Deep Learning DFT Hamiltonian (DeepH):

. {Z3 {Irl} {77 MP layer: LCMP layer:
Network architecture: l ! F—_——_———— N emmm————
[ -y ) -1\ (L-1) =) (1)
; e; U; 12) e.
Elemental Gaussian I L 'k [ { : ‘L "
embedding basis I keN, I ! keN,
' O '
(0) ) | Il )
TS | |
| I |
A 4 Y | @ | : @ =
(( VP \ Spherical 1 , I
| layer | harmonic | e | | 5, ) Vertex >
‘ | I 1 update
f ) | LayerNorm I
0 MP : y Iy ypan | pa)
> layer | j i
= < . / 2 | + Vertex | (L=1)
N &= I update | I €i
- s I I A 4
< o 0 (-1) |
: s T 6j I I I
€
[ P > I !
\| layer | I | | Edge
| | update
( | Edge I I
pq(L)
LCMP layer ]47 I update | I leij
k l ! M M : | H; if(L)
N URY iajp = 6]

Hiojp ~-= /<

(bd¢ ‘bd 9) er



Deep Learning Approaches: DeepH

Deep Learning DFT Hamiltonian (DeepH):

Performance: trained and tested on graphene 6x6 supercell MD data (containing a variety of
configurations)

MAE of H,

o, jp

(meV)

Orbital

Orbital «

meV level error of I:I\l-a,jﬁ

b

Count

(x10°)
3 .
15,000 - g,
(o) -
11 I
Hy
)
10,000 o "2 4 6
Atomic distance (A)
S.d. =315 meV
5,000 -
O -

-11 -10 -9
Value of H;, ; (eV)

Narrow distribution of H;; j; between

identical orbital pairs -,



Deep Learning Approaches: DeepH

Deep Learning DFT Hamiltonian (DeepH):

Performance: generalization for 2,000 unseen graphene configurations

c d ]
200 | —— DFT
DFT | = = DeepH
---- DeepH
O |
200 —
S I
<L
< Il
150 - =
>
© S
100 - 3
50
Energy (eV)

0 0.5 1.0
MAE of DOS (102 eV A3

Density of State (DOS): distribution of electrons of different energy states
Shift current conductivity oYY : conductivity of electrons excited by photons of different energy w
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Deep Learning Approaches: DeepH

Deep Learning DFT Hamiltonian (DeepH):

Generalization Performance: trained on flat sheet graphene, tested on curved carbon nanotubes

DFT

Energy (eV)
o
|

EEEEsEEnm DeepH

Band structures by DFT and DeepH



Deep Learning Approaches: DeepH

Deep Learning DFT Hamiltonian (DeepH):

Generalization Performance: moiré-twisted bilayer mateq’gl_

o &, } o} 00 5% o‘.. &, % o0 o0 :.u”n”u 89,09, 89,29, .:::.' ..”..”::“ :: ¥ :“:o..:: :
%ﬁf’é""%’% i : SEEEARRR
3 m L e e
S I

mee 0.0

L3334 9.
S

DOOOOOOCEOCCCHR)
T R R
=:=;o.o=o.02....'¢'.'-’o 0%

SN

-10

-15 ¢, : ; s ; : 1
-15 -10 -5 0 5 10 15
X (nm)

1.08 ° magic angle graphene: 11,164 carbon atoms per unit cell



Deep Learning Approaches: DeepH

Deep Learning DFT Hamiltonian (DeepH):

Generalization Performance: moiré-twisted bilayer materials

— d
’ Hamiltonian TE8 (DFT)/’ TBG (DFT)
j . 1 , o)
matrix 10° - $ ¢
Non-twisted structures ces . / f
— . e’ Magic
n 7’
Py 1 @& angle ™
0 £ 102 4 W
— = ] e
bR TBB (DeepH)
x
Q_ - Hamiltonian N 10° E *a\/*** TBG (DeepH)
e~ — [, e R R
DeepH structures 102 108 104
. Number of atoms
trained on non-twisted small bilayer structures Linear complexity for large systems

tested on twisted large structures e



Deep Learning Approaches: DeepH

Deep Learning DFT Hamiltonian (DeepH):

Generalization Performance: trained on non-twisted small bilayer structures, tested on twisted large
Twisted bilayer graphene (TBG)

c Twisted bilayer bismuthene (TBB)

%

»5‘:/"/ ‘;/’ “"» y ‘:‘/’ "/"/» "/’ ’:’ "/’» :’ < »

- %> - % L N . N
be/’ //’»o//’ .,/"'//'»o"' .4” '»4’.4" > 22

> > 2. > Y » Y

AR NED DY
g » » -

» ayo S O S e e
VOGRS G Sl
‘. ‘\\ “ "/s 's,g~ "".’/s “_a“’,“.’t/. ‘ & > b

TBG: 0 ~ 3.48%, N, = 1,084 TBG: 0 ~ 1.08%, N, = 11,164 TBB: 0~ 7.34°, Ny, = 244
0.3 T I °
...“'I;E:E l;'!g...:.o . ‘\\"\;gg«:v
1.0 4 N o oS | | e ;,5,»115.:;;;;;;;; ..... KNI/
0.0 Pl .!:—;‘g‘i;:- ] ::h’t L et
_ 05 I B =
3 o1, N e A BN
GC) o T - .': 8w, b 1} QC)
w sotss ’Sf’s; ““.'_' " TE00ofosnnccee W
—-0.5 - % b ..,.:5,‘-3 T 'tulﬁ:ﬁ.:.,._,_,,.r. .
0147 s S
Telse . .’
-1.0 - e, | it L
R T L LT T LILT
;) JE CLLALLLELY LAAR SRLELLLSES) GliLLIR
K r M K' K r M K' K r M K' K r M K'
77
— DFT DeepH — DFT +++ DeepH



Al in Materials Science

Directly Bridging



Deep Learning Approaches: CGCNN

Crystal Graph Convolutional Neural Networks (CGCNN) [1]:

Directly bridging the gap between crystal structures and material properties via GNN
Construction of crystal graph:

* Node v; representing physical properties of atom i
* Edge e(; j, representing the distance between atom i and its k-th nearest neighbor j

€Lk
Crystal Structure Crystal Graph

Preserving invariant chemical environment of atoms

[1] Xie, Tian, and Jeffrey C. Grossman. "Crystal graph convolutional neural networks for an accurate
and interpretable prediction of material properties." Physical review letters 120.14 (2018): 145301.
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Deep Learning Approaches: CGCNN

Crystal Graph Convolutional Neural Networks (CGCNN):
The node feature is updated following:
(t+1) _  (b) 3] () () () ) ()
vp =t Z o (Z(i,j)k”? + by ) ©g (Z(i,j)kWS + b )
ik
Where
©o _ @ ()
Zijy = Vi BV D e,
And node features are pooled for global properties prediction

- ——— -

e .
::E E ® ® QO Output
HH B: £ @ ®
@ @
R Conv L, hidden Pooling L, hidden

(: element-wise production, @: concatenation
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Deep Learning Approaches: CGCNN

Crystal Graph Convolutional Neural Networks (CGCNN):

(@)

7 Mo
-1k ¥ _
E 240
g - 200
3 /
~ _G, /’ -
2 rF 4 160 S
2 3 ’ 3
@ > 1120
3 d
5 —10t i
(] > iR
< P 80
o ,
a —12 M 40
—14 A . . . . L
-4 -12 -10 -8 -6 -4 =2
Calculated energy (eV/atom)
(b) ¢ ,
S& 18
_ { /, 16
> sl 2
3 6 14
g 5 7
g 5t 2 12
E
S 4 e 10
Q0 374 |
E 3 . -!. 8
(&) o3"
5 ¢
32 # y
o ; 4
|
a]v 2
0 — : : ‘ - :
0 1 2 3 4 5 6 7 8

Calculated band gap (eV)

(c)

Predicted Fermi energy (eV)
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Al in Materials Science

Inverse Problem



Next Level: Inverse Problem

Can we start with the desired properties?

Structure-Property
Relationship

Structure

Properties
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Next Level: Inverse Problem

Denoising Diffusion Probabilistic Models (DDPM) (Lecture 3):

G

Mapping unknown data distribution to a known prior distribution (e.g. standard Gaussian)
Making effective sampling from the original data distribution feasible

PeXt1|Xt
& H@ @H H

\~—-—‘

aussian distribution data distribution
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Inverse Problem: CDVAE

Crystal Diffusion Variational AutoEncoder (CDVAE) [1]:

[1] Xie, Tian, et al. "Crystal diffusion variational autoencoder for periodic material
generation." arXiv preprint arXiv:2110.06197 (2021).



Inverse Problem: CDVAE

Crystal Diffusion Variational AutoEncoder (CDVAE):

Training:

* Encode crystal structure M into latent representation z with a periodic graph neural network PGNNgnc
* Decode crystal aggregation properties (c, L, N) through MLPxgg

» Denoise corrupted structure M = (4, X, L) conditioned on z through PGNNpgc

Add noises A, X — A, X e o T
r——————————~——~~—'>|. | Denoise A, X '@ |
| M= (A, X,L) | ‘| ~ > | | —> Lprc
| Conditional 1 @ PGNNpg.(M |2) I 0.
1 | Lo — — L — —
r—=—=1 P d t r- - - —==-=---® =-=-==-=-=-=_=--"=---=- 1
X ' Encode redic o e 05 + :-_ -: + 4 |
I [ > | 0.5 L _ g | —> LAca
:_ . _?J PGNNgye(M) MLPaco(2) | Eorlpo_sitigni ~ latticeL _#i)fa_torzsy )

M = (A X,L) z~N(0,1)
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Inverse Problem: CDVAE

Crystal Diffusion Variational AutoEncoder (CDVAE):
Generation:

Sample a latent representation z~N(0,1)

Decode crystal aggregation properties (c, L, N) through MLPag

Randomly initialize a disordered crystal structure M according to (c, L, N)
Denoise corrupted structure M = (4, X, L) conditioned on z through PGNNpg

Predict C _’_0__5 I i
I -+ I | + 4 |
- 0.5 L _ - |
MILP AGG(Z) . IEorlpo_smgn E - Eatt_lce_L_ B _# Ef a_torzsy )
z M=(AX,L) Rand. init.
r= —“ 1 Langevin dynamics r = ‘6"
e | | =T =1 | |
Conditional - | ) |.'| ) |.‘| - |
| | e o | ‘ |
L PGNNDEC(M\z) L
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Inverse Problem: CDVAE

Crystal Diffusion Variational AutoEncoder (CDVAE):
Property optimization:

Jointly trained property predictor: P = Fyp(2)

Optimize latent using back propagation (BP) for 5,000 steps

Decode 10 crystal structures every 500 steps from the latent trajectory
Select one best structure with closest P predicted by an individual predictor

Predict r___0_5____:-: _______ !
| ® v + | I + 4 |
B < FumLp(2) : o 05 L
BP MLPA(;(;(Z) . I(Eorzpo_smgni - Eatt_lce_L_ B _#i)fa_torzsg )
AP z M — (A,X,L) v Rand. init.
- T Langevin dynamics r===1

Piarget Conditional

‘ | = r = - | .I
° |

-
I

> |—>|.‘|—>| | —> |
I
L

o
' PGNNpuo(Mlz) | ® o

L — L —
_— e ol L — = d
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Inverse Problem: MatterGen

MatterGen [1]:
Tailored diffusion process for crystalline materials:

qQ(Ar+1, Xer1, Lev1|Ae, Xe, Le) = q(Aei1]| Ae) q(Xpy1| X)) q(Lesq| Le)

« Atomtypes: 4 = (aq, a,, ...,ay) € AV
« Atom fractional coordinates: X = (x{, X5, ..., Xxy) € [0,1)V*3
e Lattice: L = (lll lz, 13) (S RSXB

[1] Zeni, Claudio, et al. "Mattergen: a generative model for inorganic materials
design." arXiv preprint arXiv:2312.03687 (2023).
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Inverse Problem: MatterGen

MatterGen:
Tailored diffusion process for crystalline materials:
* Atom type A:
q(ala;—,) = Cat(a; p = a;_1Q¢)
Cat(a; p): categorical distribution over 1-hot vectors whose probabilities are given by the row vector p
1Q:];j = q(a; = jlar—1 = i): Markov transition matrix at time step t

(1 i=j=m
)15 i=j%m
[Qt]ij—<ﬁt j=mei
k0 m#*i+j+m

f¢: probability of transiting to a MASK state
1 — [;: probability of staying unchanged
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Inverse Problem: MatterGen

MatterGen:
Tailored diffusion process for crystalline materials:
* Fractional coordinates X:
q(x¢lxo) = Ny (xg; X0, 0£ )
e Ny : wrapped normal distribution preserving periodic boundary condition (PBC)

Ny (xg; x9, 021) = Z N (xg;x9 — k, 02 1)
keZ3
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Inverse Problem: MatterGen

MatterGen:
Tailored diffusion process for crystalline materials:

Lattice L:
Naive diffusion process:
q(L¢|Lo) = N(\/ELO, (1 —a)I)
Leads to extremely narrow and small lattices
Custom limiting mean & variance:
q(LelLo) = N (JaiLo + (1 — /@ )u(m1, (1 — @) (W)
which yields the limit distribution for T — oo:
q(Lt) = N (umI, o7 (M)I)
where u(n) = 3/nc, 62(n) = nv
c: inverse average atomic density of the dataset
v: average unit cell volume of the dataset

The signal-to-noise-ratio at T is therefore independent to the number of atoms n:

lu@m)| _ sfc

SNR = li =
T50 o(n) v
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Inverse Problem: MatterGen

MatterGen:
Tailored diffusion process for crystalline materials:

Forward (corruption) process

>
; - 8 o 8 r~ a @ N
‘ ‘d N
Stable + e o @ ® o - | Random
material | - @ o, e material
-r——‘—‘a o @ © . __.0 " o0 ®
o o x_/
(A07X0,L0) (At—laxt—laLt—l) (At)Xt7Lt) (AT)XT7LT)

<

Reverse (denoising) process
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Inverse Problem: MatterGen

MatterGen:

Conditional generation of materials: ik & s
& °° ] & | 4*—?¥4
“4’ b d bd 0" : O ¢ o - F‘v‘+
. * c'e see IUN

P i i ) e T " P R ey e, e " Chemistry & s T
L) ® o«
o 2 S ‘ft )jt i’t i @.L Li-Co-O N o LiCoO
e o @ o 9 2
. - ,\ | /% .
Equivariant J

Equivariant
score network

score network <— Adapter module
K ¥ Symmetry

| § ) \ ,
ol P
Acgoen | Ao | O | o0 ‘i .

Pre-training with structure data Fine-tuning with labeled data for condition ¢

Unconditional pre-training Fine-tuning with labeled Property -
- % &
of the base model data for condition ¢ ) M=015A% o «®* ..;o. % Fe,N
.. @

Fine-tuned for different tasks with a
frozen base model
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Al in Materials Science

Al as a Powerful Assistance



Al as a Powerful Assistance: Analvsis & Interpretation

Scanning Tunneling Microscopy (STM) f
Transmission Electron Microscopy (TEM) y e \ T

5000 — W |
Single crystal Si = @ (111
§ 4000
> (220) Crystal structure
% 3000
%2000 311)
2
& 100 lL (400)(331)(422)
Characterization | N S S
10 20 30 40 50 60 70 80 90
29(") 96

X-Ray Diffraction (XRD)



Al as a Powerful Assistance: CrySTINe

Crystal Structure-Type Identification Network (CrySTINet) [1]:

Input the XRD pattern of an unknown compound

-
-

—
S
-

p—

™
ResNet Confidence Networks h ¢,
J

BT

(RCNet) :
.ovo '. .°
o’o" o
ey g/
RCNet RCNet RCNet  RCNet
#1 #2 #n-1 #n
. . Choose the most probable
Predict both categories O %— ) P .
L e - » structure type as the final result
and rel|ab|l|t|es R 41 4 #n-1 v Unknown compound Existing compound

[1] Chen, Litao, et al. "Crystal Structure Assignment for Unknown Compounds from X-ray Diffraction

97
Patterns with Deep Learning." Journal of the American Chemical Society 146.12 (2024): 8098-8109.



Al as a Powerful Assistance: CrySTINe

Crystal Structure-Type Identification Network (CrySTINet):

CrySTINet

.....................................................................

Input XRD as a 1-D vector(

_Simulated XDR
" ) Pattern1 i
r : Convolution !
Lo/ Pattern 2 layer !
L : 5 Convolution |
. 1 Pattern 10; layer
Convolution
v layer

1[G |Cig

y xuy) . MaxI aE;;)eorlingi
l (Xz’)/z)E "-

—>»S,[S,|-|S ORI, — o

B | ! “Structure type | ,IFuIIylgggrnected | \ Fullylg?grnected
| _ : o X OO CIIrIrTTd
X: R—GS+(1-G)C | "‘.' ? \ ‘

- Similarity : CL] EEENEn S?ftmax
i -_A-B : v : _ ayer
O NAILBIE ¢ (R Ry | Ry Confidence 1O Category

Cosine similarity as an extra criterion 98



Al as a Powerful Assistance: 4D-STEM

W Nanometer
incident probe
4-D Scanning Transmission Electron Microscopy (4D-STEM) :
* Each pixel in real-space corresponds to a 2-D diffraction pattern y V2D scanning
e Each diffraction pattern contains local structure information f i

within the nm range x ﬂ
e 4D-STEM data can easily reach GBs |
 Statistical or computational approaches for interpretation are |

indispensable

Specimen

Lip(x,y,u,v)
4D data

>3k diffraction patterns
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Al as a Powerful Assistance: 4D-STEM

4D-STEM Data Analysis [1]:

Input Alignment Unsupervised Clustering

» L
£l
o o
S 9
r2 g -
.- .
-
o P
g
o |
°

WS: WSe:;

‘m

BG Angle 1 Angle 2 Flat Ripple 1 Ripple 2Ripple 3

Hierarchical k-means clustering Features of different scales are clustered sequentially

[1] Kimoto, Koji, et al. "Unsupervised machine learning combined with 4D scanning transmission 100
electron microscopy for bimodal nanostructural analysis." Scientific Reports 14.1 (2024): 2901.



Al as a Powerful Assistance: 4D-STEM

4D-STEM Analysis:

b BKG
) WS>
 WSe>
WS2 WSe2
d w Flat ;
/7 W Ripple1
/== Ripple2
/== Ripple3 1 |
P BG Angle 1 Angle 2 Flat Ripple 1 Ripple 2Ripple 3
............................................ Features of different scales are clustered sequentially
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Al as a Powerful Assistance: 4D-STEM

4D-STEM Analysis:

d e f

== Flat Region Bending1
== Bending Bending2
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Al as a Powerful Assistance: Material Discovery

GNOME [1]:
~ 7 7 7 Tstructural piveline N\
, ructural pipeline :
| GNN <-------4-- fro--emeemmeeeeeeeeceeeecencecccccccccceeeaas
I —> —> —> Stability

Candidates Graph

— Energy models

—>| 2.2 million stable structures

- .

GNoME
database

Compositional pipeline

® : —> Interatomic potentials
v :
’ GNN . L
| Li,S,0, — 5 —> Stability — % :

Candidates Graph AIRSS

Repeat for rounds of active learning

103
[1] Merchant, Amil, et al. "Scaling deep learning for materials discovery." Nature 624.7990 (2023): 80-85.



Al as a Powerful Assistance: Material Discovery

GNoME:

Structural pipeline

Candidates Graph

—————————————————

Repeat for rounds of active learning

_
GNoME
database

— — —> St '

Energy models

-

2.2 million stable structures

.

Interatomic potentials
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Al as a Powerful Assistance: Material Discovery

GNoME:

400,000
mm External databases

mm GNOME

300,000

200,000

100,000

Number of stable materials

2019 2020 2021 2022
Year

Discovered up to 380,000 computationally stable structures never found before .



Al as a Powerful Assistance: Material Discovery

Autonomous materials discovery [1]:
/z Computations Text mining \ Robotic synthesis

~ N
Materials Project DeepMind

] %K

| |
I I
I I
I Air-stable I
I I
I I
I I
|

ood Y /
Novel ! !
\ E J ¥
Targets DODOOOOOEEOM : /
\ Precursors + temperature AEEEw / Powder dosing Characterization
~ — 0l .
a ) Raw diffraction pattern
Predict reaction path Suggest
recipes é
l Structure v
Precursors databases § Tarqet
600 °C .. - s
Intermediates Probability (%) '
700 °C Predict phases
Products /
AAAAAAAA Confirm by
Update | ¢ b il ob.c ' refinement
. OO X XOX OXX @ «f—— - tthuwhnste )
106

Recipe optimization Phase identification
[1] Szymanski, Nathan J., et al. "An autonomous laboratory for the accelerated synthesis of novel materials." Nature 624 7990 (2023): 86-91.



Al as a Powerful Assistance: Material Discovery

Autonomous materials discovery:

Computations Text mining

’——————————

NN\

Robotic synthesis

~ N A
Materials Project DeepMind

] %K

Air-stable

oono
Novel

. E J
Targets OOOOOOOOOOOR

[
[
[
[
[
J
[
VARALEA NN
Precursors + temperature EEEEw )/
H

Heating

Powder dosin izati
- > EE \N 9 Characterization
é . , ~ Raw diffraction pattern
Predict reaction path Suggest _—n o o e adlls
recipes ("
l Structure v
Precursors databases § e
600 °C .. Q_C“_’ arge
Intermediates - ®
Probability (%
700 °C Predict phases robability (%)
Products
AAAAAAAA Confirm by
Update | | + 3 & 1 1.1 refinement
) OO X XOX OXX@«—F1— W lluibinsisr

Recipe optimization

Phase identification
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Al as a Powerful Assistance: Material Discovery

Autonomous materials discovery:

Computations Text mining Robotic synthesis

~ N A
Materials Project DeepMind

] %K

: Heating

Air-stable e
oono \‘
Novel \
. E J y,
Targets 00D OODOOOOOOR )
Precursors + temperature WEEENE Powder dosing Charastedizabon
— HH N .
a N 2 Raw diffraction pattern
Predict reaction path Suggest
recipes { (
l Structure 7
Precursors || databases 3 s
600 °C I .. Q_C“_’ arge
Intermediates - ®
Probability (2
700 °C [ Predict phases robability ()
Products |
AAAAAAAA I Confirm by
Update { [ i .1 & .1 .1 ] refinement
\_ [ I D od )4 > o4 & T\ gt Aot B
108

-
Recipe optimization N~ Phase identification A



Al as a Powerful Assistance: Material Discovery

Autonomous materials discovery:
Computations Text mining Robotic synthesis

~ N A
Materials Project DeepMind

] %K

Air-stable /! 7
oo ;
Novel \ '
. E J J
Targets I:IDEII:IDDDI:IDEIEIJ;\L : \‘\
g NN I N S . - - - _\ \ / ~
V4 Precursors + temperature 'i l : ( L Powder dosing Characterization
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| 4 _ . Suggest ‘ Raw diffraction pattern
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I l Structure \
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Al as a Powerful Assistance
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Al in Materials Science

Outside and Beyond Crystals



Outside of the Crystals: Amorphous Materials

Al in Polymer Science:

* Input polymer electrolyte structure and
formula
* Predicating ionic conductivities o by
predicting pre-exponential factor A and
activation energy E, in the Arrhenius
equation:
a

In(o) =1n(A4) — BT

Salt Structure

Polymer Molecular
Weight

Salt Concentration

Temperature

ChemArr Architecture [1]

O
— ) ) -
V ~osfonl

Chemprop MPNN

In(A) — E?

T =In(o)
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[1] Bradford, Gabriel, et al. "Chemistry-informed machine learning for polymer electrolyte discovery." ACS Central Science 9.2 (2023): 206-216.



Beyond Crystals: MetaMaterials

Metamaterials based on prescribed mechanical behavior [1]

a Inverse prediction module Forward validation module
1x256 5128 es 128 1x128 1"2.56
s .l ® ® . ° ® -4
Local maximum End point g § xf : ? ;11} ? ? Thve (Y} ? ® XP1N Predicted curves
Unear 02 &) (O £4) X7 . . 6 s s — Target curve
elastic limit § & & ® === Optimal design
* Mechanical properties : x I8 . IR
. 9 Strain energy g X'sr '_)4 >— E
determined by mm scale topology & / - iR | | B\ - | | i [
= -~ = =
H Local minimum T
(10 mm Unl.t Ce”) ol e g X --»--b. -&}_ T (V) "'."’l-"m
* |Inverse design of topology Strain 2 5 L) "i‘i""’ﬁ} 2m - - - = Strain ¢
structure with the target i T e ——
compressive behavior in the form
b C Min.feature d Compressive e
of curve features SIZ€ (Sye) | \l, bk — Targetcurve
== Measured curve

1
Dt Uncertain jon
\%\ 4 o Printvoume | NS R & A
T ©) Sk A 25T o
I A3 3 Straine §

Fixed *
boundary

Stress 0 Strain ¢

[1] Ha, Chan Soo, et al. "Rapid inverse design of metamaterials based on prescribed mechanical behavior through machine learning." Nature 113

Communications 14.1 (2023): 5765.



Beyond Crystals: MetaMaterials

Shape-programmable 3D kirigami metamaterials [1]

(b)

Machine Learning (ML)

Desigiy Framework
. . . Experiment
* Inverse design of cut layout with the desired
deformation opo <o i
q- Clustering
(a) Kirigami Meta-atom \ w  Design .
g l
FEM s Space =, ' Tandem Deep
Kirigami Environmen s Neural Network  Symbolic Regression
Tg Genetic Programming
é Inverse Design
b7 Tunable Control
g | |
S
FEM E
- K
Lmegr = Controllable
Buckling g Kirigami Meta-atom
%
(G)
Geometric
Imperfections Architecture Actuation
Functionalization », Sensing
FE_M (c) Metasurfaces
Nonlinear
Buckling Metatextures \

Functional Kirigami
Meta-Material

ﬁ\ Optics  Flexible e- >

Energy Harvesting

[1] Alderete, Nicolas A., Nibir Pathak, and Horacio D. Espinosa. "Machine learning assisted design of shape-programmable 3D kirigami metamaterials." npj 114
Computational Materials 8.1 (2022): 191.



Useful Resources:

* A Tutorial on Density Functional Theory:
https://www.researchgate.net/publication/226474665 A _Tutorial on_Density Functional Theo
ry
* Material Project: https://next-gen.materialsproject.org/
 MP Seminar — Inverse Design: Why Aren't We There Yet?:
https://youtu.be/0l07QNAexRc?si=EaNuCcuwwDIDfBxM
MP Seminar — MatterGen: https://youtu.be/Smz1go6 Spo?si=xnUSKXWNFVIYf-Zf
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https://www.researchgate.net/publication/226474665_A_Tutorial_on_Density_Functional_Theory
https://www.researchgate.net/publication/226474665_A_Tutorial_on_Density_Functional_Theory
https://next-gen.materialsproject.org/
https://youtu.be/0lO7QNAexRc?si=EaNuCcuwwDlDfBxM
https://youtu.be/Smz1go6_Spo?si=xnU8kXWNFVIYf-Zf

Additional materials



Physical properties derived from the DFT
Hamiltonian

e Band structure and DOS:

* The eigenvalues g, and eigenstates v,,;, of the Hamiltonian H at band n and
wavevector k can be obtained by solving the generalized eigenvalue problem:

H(k)vn = eqeS(R)vpg
* where the overlap matrix S is obtained by the inner product of the basis at
very low computational cost

* £, Of at band n and wavevector k construct the band structure

* DOS is obtained by integrating the number of electronic in momentum space
in the band structure over each value of energy:

D(E) = j&(E — E(k))d3k



Physical properties derived from the DFT
Hamiltonian

e Shift current conductivity a¢:

b me® [ d3k
0 (w) = (27)3 X Z fnmlm(rmnrnm + Tmnrnm )5(wmn (k) — w)
n,m

* Wnn(k) = E"k;lEmk: difference of energy eigenvalues

* fom = fn(K) — f,,,(k): Fermi—Dirac occupations of bands n and m at
wavevector k

arnm

e 12 and ¢ = —i(r% — 2. )rP . are Berry connection and its

general derivative, caIcuIated with the DFT Hamiltonian using the method
developed in ref [1]

[1] Wang, Chong, et al. "First-principles calculation of optical responses based on nonorthogonal localized
orbitals." New Journal of Physics 21.9 (2019): 093001.



